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INTRODUCTION 

For the past several years, the cluster chemistry of metal-rich halides has 

been studied intensively. The first such cluster compounds,discovered in the 

niobium-chlorine,®''^ niobiima-fluorine,® and tantaltun-chlorine® systems, were 

synthesized and characterized in the 1960's. Since then, a plethora of cluster-

containing phases Lave been prepared, with both early transition metals and 

rare-earth metals and a variety of ligands including halogens, chalcogens, and 

oxides.'"® 

Such cluster-containing compounds exhibit a fascinating variety of 

structures which are, in most cases, derived firom transition metal MgXg or M6X12 

units composed of Mg octahedra which are sheathed by either eight face-capping 

X ligands (MgXg) or twelve edge-bridging X ligands (MgXij). Such units occur as 

discrete clusters or are condensed into extended metal-metal bonded arrays. 

Generally, the MgXg-type clusters are preferred in compounds which contain a 

smaller metal M and a larger ligand X and are relatively electron-rich, as in 

Nbglii,^"'" NbglgS,^^ MogSg,^® and Ti5Te4." In contrast, the MgXia unit is foimd in 

more electron-poor phases with larger metals, as in the group III and IV metal 

halides, along with the presence of an interstitial atom (Z) located in the center 

of the Mg octahedra.^® Originally, the phenomenon resulted fi:om the inclusion 

of impurities during synthesis, with the early examples containing light 

main-group elements (H,C,N), as in Nbgl^H,^® SC7CI12C," and ZrgCligN.^® The 

interstitial atom at the Mg center provides strong M-Z bonding interactions, as 
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well as its valence electrons to the metal-metal bonding levels of the otherwise 

electron-deficient Mg cluster. Once the importance of the interstitial atom in 

cluster formation was recognized, systematic investigations were imdertaken in 

attempts to incorporate a wide range of prospective Z atoms. Since then, 

elements covering a large portion of the periodic table have been encapsulated, 

resulting in nxamerous new phases and a variety of novel structures. 

An abtmdance of compounds containing discrete Mg clusters have been 

prepared in the zirconium chloride, bromide, and iodide systems,^®"® with 

interstitials ranging fi-om light main—group elements to transition metals. Addi­

tionally, inclusion of coxmtercations, typically alkali metals, alkaline-earth 

metals, or rare-earth metals, has greatly increased the scope of stable com-

poimds which adhere to the same electron rules. The prolific nature of these 

cluster phases has provided the opportunity for systematic studies based on both 

structural and electronic effects, resulting in a basic understanding of many 

bonding and dimensional principals. 

Cluster phases in the rare-earth metal halide systems exhibit a structural 

chemistry including, in addition to discrete Mg clusters, eg. MgljoZ,®^®^ 

PrigliyFe,^ a variety of condensed cluster units. The degree of condensation 

ranges fi:om bioctahedra in GdioCiigC4and related phases^®® to chains of edge-

sharing octahedra (eg. or sqxiare anti-prisms (Y4Br4Os''0, double chains 

(MglgZ""'^), layers (eg. GdClH,,'" GdgClaC^, and finally, three-

dimensional firameworks (GdaClgC,"^' PrglgZ^). Many of these phases plus other 



www.manaraa.com

3 

examples have been reviewed recently/®"^ The phases are again typically 

composed of Mg octahedra which are condensed through shared edges and are 

sheathed by ligands. Generally, the degree of cluster condensation is controlled 

by the X:M ratio, with condensation proceeding until the metal unit is 

coordinatively saturated by the ligand. 

In some cases, the inclusion of alkali metals or alkaline-earth metals into 

rare-earth metal halide cluster compounds has been possible.®®*®^"®^ The 

compound Cs2Lu7Cli8C®^ contains octahedral LugC units and is isostructural with 

Cs2Zr7Cli8K,®° while CsErgligC®^ adopts a structure closely related to the 

ScyCligN^' structure. Other phases include Cao.esProsgCPrgliaCo)^ and 

RbPrgClioCj,®^ which has a novel structure built of trigonal bipyramidal Prg units 

centered by Cg. 

The existence of a group of rare-earth metal halides that are built of M4 

tetrahedral units has been known for several years.^®*®" The compoxinds, eg. 

GdaClgN,"® a-GdaClgN,"^ p-Y2Cl3N^,^(Yb,Eu,Sm)40Cl6,°^~ are again stabiUzedby 

interstitial atoms, usually small main-group elements, which form strong M-Z 

bonds. Although the compoxinds tend to exhibit short M-M distances, some of 

these phases do not form metal-metal bonds, but instead are bound by only M-Z 

and M-X interactions, and are only loosely termed "cluster compoxinds". More 

recently, M9l8C40®^ (M = Y, Ho, Er, Lu) were discovered, which contain 

octahedrally coordinated C interstitials along with tetrahedrally coordinated 0 

atoms. 
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The occurrence of a rare example of oligomeric cluster condensation was 

observed in Yael 2oRu4®^ and in the recently discovered Gd2ol28Mn4®®. The 

compoimds contain M16Z4 xinits which can be described as tetramers of MgZ 

clusters. Several new compounds in the scandiimi bromide and yttrium bromide 

systems have now been prepared which contain this type of oligomeric cluster 

as the major bxiilding block. The interstitially stabilized unit exhibits a 

narrow range of electronic stability, forming only with interstitial atoms and 

structxare types that resiilt in close to 60 electrons for cluster bonding. As the 

electronic nature of the interstitial varies, structural changes occur which 

maintain this optimal electron coimt. 

In the following sections, the synthesis and characterization of some new 

reduced rare-earth metal halides will be discussed. The results are presented 

based on structural similarities and increasing structural complexity for a given 

rare-earth metal. The main emphasis will be on the new structxiral features 

exhibited in the phases, as weU as their structural relationships with other 

cluster phases. In some cases, the magnetic properties will be presented as well. 
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EXPERIMENTAL 

Materials 

Rare-earth metals 

The rare-earth metals used in the reactions were obtained from the 

Materials Preparation Center of Ames Laboratory. They were prepared by the 

metallothermic reduction of the rare-earth trifluorides by triply distilled calcium 

metal followed by vacuum distillation. After processing, the metals were stored 

inside a Nj-filled glovebox (VAC, HE-493). Impurity levels in the Pr, Sc, and Y, 

are listed in Table 1. Elements not listed were either present in quantities <1 

ppm or below the detection limit. Scandiima metal was in the form of strips (~3 

X 5 mm), ttimings, or powder. The powdered scandivim was prepared by Dr. S.-J. 

Hwu through the thermal decomposition of groxmd ScHg imder dynamic vacuum 

at 700-750°C and stored in a Ng-filled drybox.®^ Yttrixmi was cold-rolled into 2 

mill sheets which were cut into sTnall pieces (~2 x 3 mm) immediately before use. 

Praseodymium metal was in the form of turnings carved from a small chimk 

prior to use. 

Table 1; Impurity levels in rare-earth metal starting materials (ppm atomic) 

H C N 0 F Fe other 

Pr 558 210 121 299 <22 23 Si-2, Y-1.3, La-8, Ta-16, Nd-9 

Sc 134 67 10 154 116 118 Cl-3, Cr-2, Co-2, Cu-10, Y-4.6, 
La-4.3, Pr-2, Nd-1.3, Tb-35 

Y 176 89 13 107 <14 12 B-1.1, Cl-20, Ti-3, Cr-2, Cu-4, 
Zr-22, W-18 
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Rare-earth metal trihalides 

The rare-earth metal tribromides were prepared according to the 

ammonitim bromide route.®^®® This method involved the oxidation of the metal 

by NH^Br to form (NH4)3MBr6. This ammonium salt was subsequently 

decomposed to form the rare-earth metal tribromide. The tribromides were 

pxirified by vacuimi sublimation and stored in a Ng-filled dry box. 

Scandium metal strips and turnings (Ames Lab, 1.5 g.) were placed in a 

Pyrex tube with a large excess of NH4Br (Fisher, reagent grade). The Ar-filled 

tube was connected to a dry ice/acetone-cooled trap followed by an oil-filled 

bubbler. The material was heated to 320°C at which time Hg and NHg gases 

were evolved. After two days of heating, the material still contained a few small 

pieces of imreacted metal. The material was groxmd in air and reheated for 14 

hours, again exhibiting the evolution of gas. The resultant light-tan powder, 

presumably a mixture of (NH4)3ScSrg, NH^Sr, and side products (ScOBr), was 

transferred to a fused-sihca tube and heated under dynamic vacutmi. The 

temperature was increased slowly over the course of two days to SSO'C, during 

which the (NH4)3ScBr6 decomposed and NH4Br sublimed to the cooler end of the 

tube. The anhydrous ScBr3 remained in the hot zone. 

The ScBr3 was purified by vacuum sublimation. Inside a Nj-filled 

glovebox, the white powder was placed in a two-piece Ta apparatxis which was 

then placed inside a fused-silica tube. The Ta container prevented reaction of 

the tribromide with the fused silica and allowed for the easy removal of the 
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pxarified product. While under dynamic difEusion pump vacuum, the material 

was heated gradually to ~700°C, the temperature at which sublimation occurred. 

The ptirified product was characterized by powder diffraction and, when 

necessary, was resublimed until no ScOBr was detected. The final product, 

consisting of white plates and powder, was placed in a vial which was stored 

inside a mason jar in a Ng-fiUed glovebox. 

YBrg was prepared in a manner similar to ScBrg. The Y metal (Aesar's, 

dendrites) used was of lower purity with respect to oxygen than the Ames Lab 

material. This may have increased the amoimt of YOBr formed, but this 

impiirity was removed in the later purification step. The formation of 

(NH4)3YBr6 began at SIO'C and the reaction was continued for three days. The 

tan powder was heated for ~12 hours at 400°C in vacuo to decompose the 

(NH4)3YBr6 and sublime the NH4Br to the cool zone. The white YBrg was 

vacuum sublimed at ~800°C and its purity confirmed by powder diffraction. 

YOBr is easily identified with powder diffraction, based on the presence of two 

strong characteristic lines. 

Previously sublimed PrBrg was kindly provided by Dr. R. Llusar of Ames 

Laboratory. Purity of the light green powder was confirmed by powder 

diffraction. 

Interstitial elements 

Transition metals were introduced in elemental form as either powders 

or chunks. Powdered Ni, Ru, Rh, Pd, Os, Ir (Johnson Matthey, >99.9%), Re 
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(Aldrich, 99.99%), Cr (Aesar, 99.5%), Fe, and Cu (reagent grade) were degassed 

at ambient temperature and stored in small vials in a glovebox. Chiinks of Co 

(Aesar, 99.5%), Mn (Johnson Matthey, 99.99%), and Pt strips (government issue, 

reagent grade) were used as received. 

Main group elements were utilized as powders. Amorphous B (Aldrich, 

99.999%) and spectroscopic grade graphite (National brand. Union Carbide) were 

readily available. PrN, kindly supplied by Dr. J. T. Zhao of Ames Laboratory, 

was used as a source of nitrogen. Oxygen was added in the form of PrgOji. Both 

the PrN and PrgOn were characterized by powder dimaction and foimd to be 

single phase, ie. >95% purity. 

Alkali metals 

Alkali metals were used either as the alkali-metal halide or in elemental 

form. The alkali-metal halides (reagent grade) were dried by slow heating under 

dynamic vacuum and then sublimed. Elemental sodiimi (Alfa, 99.9%) was 

preferred in some instances. The metal was freshly cut before use in order to 

minimize surface impurities. 

Synthetic Techniques 

The basic synthetic strategy involved loading a variety of stoichiometries 

over the compositional range of study and varying the reaction conditions to 

maximize the yield of new phases. When reaction products were mtalti-phase, 

the yield of other components (based on relative powder pattern intensities) was 

used to estimate the approximate composition of unidentified phases. Once a 
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compound was identified (by either powder pattern or single crystal informa­

tion), attempts were made to prepare the phase in high yield. 

The preparation of reduced rare-earth metal halides presents many 

challenges. Synthesis must generally be carried out at elevated temperatures 

(>600°C) while every measure is taken to prevent contamination of the reactants. 

This req\jires a container that not only withstands high temperatures but also 

remains inert to the reactants and products of the synthesis. Since reaction of 

metal halides with traditional Pyrex or silica containers at these temperatures 

is well known, containers of Ta or Nb have been used extensively and with much 

success for the synthesis of a variety of reduced metal halides." Such containers 

not only remain inert in these systems to >1000°C but can withstand internal 

pressiires of as high as 30 atmospheres. The Ta or Nb containers are susceptible 

to attack by Oj or HgO at high temperatures and must be enclosed in a well-

evacuated sealed silica container to prevent oxidation by air. This places a limit 

on the temperatures attainable using this type of container, as failure of the 

silica jacket occurs near 1250°C. However, this limitation was not a problem in 

the systems of interest. Niobixim proved a better choice for most reactions in 

this study, due to its similar inertness to rare-earth metals and trihalides as 

well as most of the interstitial elements used coupled with its lower cost relative 

to Ta. In a few cases, Ta containers were used when formation of Nb-interstitial 

binary phases seemed problematic. 
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Another very important aspect of the synthesis of these reduced metal 

halides is their sensitivity to the presence of impurities in the reaction system. 

In fact, it was the presence of adventitioiis impurities in 'TDinaiy" reactions that 

led to the discovery of many reduced Zr and rare-earth metal halides. 

These phases were fotmd to contain H, C, N, or 0 as interstitial atoms. In the 

present study, interstitial elements were purposefully introduced. However, 

phases formed with adventitious imptirities could still cause much confusion and 

impede the characterization process. Thus, when preparing starting materials 

and loading reactions, extreme care was taken to exclude all possible sources of 

these light atoms. 

A second problem is encountered when oxygen or water is introduced into 

the rare-earth metal halide systems. The reaction between O2 or HgO and MBrg 

to yield the corresponding MOBr is very favorable. The MOBr acts as a sink for 

any oxygen that enters the system. The formation of this phase, then, will 

change the amount of metal halide available to react with the interstitial 

element. That is, the stoichiometry of the reaction will have deviated from that 

originally loaded. This problem is intensified as the reaction temperature 

increases. Over long reaction periods at elevated temperatures, small amoimts 

of oxygen-containing species are able to diffuse through SiOg."® Consequently, 

the chances of oxygen contamination tend to increase as both reaction time and 

temperature are increased. 
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Synthesis began with the preparation of reaction containers. Niobium 

(and tantalimi) tubing, available in 3/8" diameter, was cut into pieces 4.5 cm 

long and cleaned with a solution of 25% conc. HNOg, 55% conc. H2SO4, and 20% 

conc. HF (by volimie) for 15-30 seconds. The reaction was vigorous and was 

performed in a fume hood. The tubes were then rinsed thoroughly with running 

distilled water for ~20 minutes. After complete drying, one end of the tube was 

crimped tightly and welded shut using a txmgsten-inert gas (TIG) procedure.'^ 

If further cleaning of the empty tube was necessary, soaking in distilled water 

for one day ensured the removal of all cleaning solution from the weld. The 

tubes were heated only slightly to prevent possible oxidation of the metal 

sxirface. 

Reaction containers were loaded inside a Ng-filled glovebox eqmpped with 

a gas circulation and purification system and then welded shut. The moisture 

level inside the glovebox was maintained at <0.01 ppm by volume. Reactions 

were loaded with stoichiometries designed to prepare 150-200 mg. of a 

hypothetical compoimd. Quantities of starting materials were weighed by 

difference on an electronic balance with ±0.0005 g precision. Care was taken to 

prevent material from sticking to the rim of the Nb tube during loading, as 

vaporization or decomposition of this material during welding could result in the 

formation of holes. After addition of all starting materials, the end of the Nb 

tube was crimped tightly shut with a vise-grip and the tube was transferred in 

an air-tight container to the welder. The Nj-filled tubes were exposed to air for 
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only a few seconds while placing into the welding chamber. Once inside the 

welder, the tubes were inunediately evacuated, followed by alternately purging 

with inert gas (He or Ar) and again evacuating until the pressure was less than 

10 millitorr. The chamber was then back£[lled with inert gas to just below 

atmospheric pressure and the tubes arc-welded shut. 

The Nb reaction containers were enclosed in an evacuated fused silica 

vessel and then heated at elevated temperature (600-1200°C) for periods of time 

ranging from several days to several weeks. The Nb tubes were placed inside 

a silica tube connected through a long neck to a ball joint. The open end of the 

silica tube was sealed with a hydrogen-oxygen flame, with care taken to 

minimize heating of the Nb reaction containers. The Nb containers and interior 

of the silica tube were then etched with the afore-mentioned cleaning solution 

and rinsed thoroughly, first with distilled water and then by acetone. The 

apparatxis was dried at <100°C before being connected to a vacutmi line equipped 

with a mercury diffusion pimip. While imder dynamic vacuum, the silica 

container was heated repeatedly with a natural gas/oxygen torch until red hot, 

in order to remove as much water from the silica as possible.^^''^ After the vessel 

was evacuated to below the discharge level of a Tesla coil (~10'® torr), the neck 

was sealed shut. The reactions were placed in the center of a fiimace equipped 

with a temperattire controller. Temperatures were measured by a chromel-

alumel thermocouple, which was positioned next to the tube in the furnace 

interior. Typically, the reactions were heated quickly to temperatures near the 
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sublimation point of the trihalide and then maintained at or slowly ramped to 

temperatures between 725-1100°C. Various methods were employed to 

encourage crystal growth, including slow heating and cooling ramps, tempera-

txire gradients, addition of alkali-metal halides to provide a flux, and addition 

of AlBrg as a transporting agent. 

All handling of reaction products was performed imder a dry nitrogen or 

helium atmosphere inside a glovebox to prevent hydrolysis or oxidation of the 

material by moisture or oxygen. After visual examination, preparation of 

samples for powder diffraction, and selection of possible single ciystals, the 

remaining sample was stored in a sealed, evacuated Pyrex ampoule. 

Characterization 

Visual inspection 

Visual inspection of the reaction product often provided much information 

about the success or lack thereof of the synthesis. Reactions were opened in a 

drybox equipped with a binocular microscope mounted on a nearly horizontal 

plexiglass top. The products were carefully examined and the color, morphology 

and approximate amounts (by volxmie) of each of the materials were noted. 

Often, the success or failure of a reaction was evident with just this initial 

inspection. With experience, it was possible to identify much of the material 

(starting materials, MOBr, intermetallic phases, etc.) which allowed for more 

efficient characterization of new phases. In many cases, new phases could be 

recognized and separated from the bulk on the basis of color and crystal habit. 
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eg. black needles vs. white flakes. Even if a new material was obtained in low 

yield, it was possible to advance its characterization through selective sampling 

of the product. And though the yield estimates were crude, they were helpful 

in determining the likely composition of new phases. 

X-ray powder diffraction 

Routine characterization of these materials was accomplished with X-ray 

powder diffraction. This technique allowed identification of individual 

crystalHne components of miiltiphase samples. Each phase exhibited a 

characteristic "fingerprint" which could also be used as a semiqviantitative 

measure of its abtmdance in the sample. Also, the symmetry and precise lattice 

parameters of the compounds were determined when necessary. 

After careful visual inspection, reaction products were prepared for 

analysis by Giainier diffraction. Samples were gro;md in the drybox, mixed with 

a small amount of Si standard (NIST, SRM-640b), and mounted between two 

layers of cellophane tape to prevent exposure to air. Frequently, more than one 

sample was prepared from a multiphase product. Powder patterns were 

photographically recorded with an Enraf-Nonius (FR-552) Guinier camera 

equipped with a rotating sample holder inside an evacuable chamber. The 

a « m 9 • • 
incident radiation was monochromatic CuKaj (X=i.540562 A) and the range of 

the exposed film was from ~2-85° in 20, sufficient to record the position of the 

first five silicon lines. During the exposure, the chamber was under dynamic 

vacuimi with a t3T)ical pressure of ~200 millitorr. 
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The observed powder patterns were compared to observed'* or calculated 

patterns of known compoimds (or hypothetical compounds with known structxire 

types) that were generated with the program POWDER.'® By careful examina­

tion, it was possible to identify lines characteristic of starting materials, side 

products, and other known phases. In multiphase samples, intensities of the 

strongest line of each phase were used as a rough estimate of their relative 

proportions in the product. However, this method was sometimes misleading, 

as these intensities may be affected differently by symmetry and preferred 

orientation from one phase to another. 

When a new compound was discovered, the positions of the powder 

pattern lines were measured with an Enraf-Nonius Guinier viewer. These 

positions were converted into 20 values with the program GUIN'® using a 

quadratic equation derived from a least-squares fit of the positions of the silicon 

lines to known diffraction angles. If the structure type of the new phase was 

known, the lines were indexed manually and the lattice parameters and errors 

were calculated using the program LATT." For phases with unknown structure 

types, determination of the lattice symmetry, cell parameters and indices of the 

lines was attempted, with limited success, using the program TREOR.'® 

Single crystal X-ray dimractioii 

Ultimatsly, the characterization of new phases with unknown structure 

types depended on the successful completion of single crystal X-ray diffraction 

studies. These studies revealed the structural geometry and stoichiometry of the 
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new phases, which allowed for interpretation and greater understanding of the 

structxiral and bonding features present in the new compoimds. 

Visual inspection of the product was very important when seeking single 

crystals of a new phase. The sample was searched painstakingly for particles 

exhibiting smooth faces or geometric shapes that might indicate single crystal 

growth. Lacking these features, small irregular chunks of the new phase were 

chosen, in the hope that suitable crystals might be located. When a likely 

crystal was fovmd, it was picked up with the grease-coated tip of a glass fiber 

pulled from a silica rod. When necessary, powder and other material was 

removed fi:om the surface of the crystal by rolling it in Apiezon-L vacuum grease. 

The crystal was mounted inside a glass capillary (0.2-0.5 mm dia.) where the 

grease held the crystal in place. The end of the capillary was plugged with 

grease and the capillary removed from the drybox. The capillary was sealed 

with a small natxiral gas/oxygen torch and the end was coated with molten 

Apiezon W wax. Prior to single crystal work, the capillary containing the crystal 

was mounted in a metal pin. 

Crystal quality was measured by photographic methods. Initial screening 

was accomplished with oscillation and Laue photo techniques. Crystals 

exhibiting doubled spots or powder rings were set aside or discarded. The best 

crystals were studied further by single crystal X-ray difiraction. In some cases, 

Weissenberg and precession methods were employed to help determine the 

symmetry, lattice parameters, and space group of new phases. 
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Crystallographic data were collected at room temperature on a Rigaku 

AFC6R or Enraf-Nonius CAD4 diffractometer. Both are automated four-circle 

dififractometers operating with monochromatic Mo Ka^ (X=0.70173 A) radiation. 

Use of a rotating anode for X-ray generation allows the Rigaku to operate at a 

higher power than the CAD4. The resultant increase in X-ray intensity permits 

orystallographic studies of very small or weaMy diffracting crystals. Both 

instruments are operated by software systems that allowed for the convenient 

location, centering, and indexing of reflections. The systems also include 

programs for determination of cell parameters, lattice symmetry, and an 

orientation matrix. Axial photos were often used to confirm the suggested lattice 

parameters and Laue symmetry. Following this determination, data collection 

parameters were carefully chosen. Three standard reflections were meastired 

periodically to monitor instrument and crystal stability. No significant decay 

was observed in any of the data sets. After data collection, ^-scans were 

measured on at least three intense reflections having ^ near 90°. 

Data processing included a Lorentz-polarization correction and an 

empirical absorption correction using an averaged 4'-scan. Reflections were 

defined as observed if I/Oi >3. The data sets, usually containing redundant data, 

were studied carefiiUy to identify any extinction conditions that would indicate 

the correct space group. Redxmdant data were then averaged in the chosen point 

group to generate a unique data set which was used for structure refinement. 
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The structxire solution began by determination of an initial model. For a 

phase with a known structure type, the positional parameters of an isostructural 

compoimd were employed. If the structure was unknown, an initial model was 

obtained using the direct methods procedure available in the program SHELXS-

86.'® 

Structure refinement was carried out with the TEXSAN®" software 

package. Atomic positions and thermal parameters were refined with a full-

matrix least-squares calcxilation followed by standard Fotirier syntheses. The 

structure factors were calculated using neutral atomic scattering factors with 

corrections for both real and imaginary parts of anomalous dispersion for 

elements with Z >10.®^ Usually, refinement of a secondary extinction coefficient 

was appropriate. If the empirical absorption correction seemed inadequate, an 

absorption correction based on the isotropic model was applied with DIFABS.®^ 

In some cases, it was appropriate to refine the occupancies of certain positions. 

Occupancies that refined to within 3a of 100% were reset to that value. The 

overall quality of the solution was measvired by the residual electron density 

observed in a final difference Fourier map, along with the values of R and R„. 

Important data collection and refinement parameters of specific structure 

determinations are tabulated in the corresponding results section. Positional 

and thermal parameters, as weU as important bond distances and angles, are 

also reported in the results section. When available, lattice constants derived 

fi-om Guinier powder patterns were used in distance and angle calculations. 
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Drawings of the structures were generated with ORTEP.®® Thermal ellipsoids 

are drawn at the 90% probability level unless otherwise indicated. Definitions 

of some important structure refinement parameters are given below. 

1) The linear absorption coefficient, p 

i  

where is the unit cell volume and is the ntmiber of a given atom in the tmit 

cell. Pia is the atomic absorption coefficient tabxilated in the International 

Tables.®^ 

2) The secondary extinction coefficient, 

\F 

T. T> O-W*O "fVio T pT>/1 T>/\1o*n»yp4-5niT> 
JL.A  ̂ C»» CiULJiV* tWJkVAJk 

3) The R factor for averaging data is calculated as 
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n m 

_ i=i j=i R = 
ave „ 

i=l 

where n is the ntimber of unique reflections that was observed more than once 

and m is the number of times a given reflection was observed. <:Fi^> is the 

average value of for a imique reflection i. 

4) The crystallographic R factors are defined as: 

R= i=l 

E 
i=l 

K= i=l 

Ew.l^ofcP 
V *=i 

1/2 

where w = 1 / and n is the nxmiber of reflections 

5) The coefficient Ujj of the anisotropic temperature factor expressions are 

defined as follows: 
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r=eg)[-2ii^(UjiA^a 

+2UJika 'b "COSY * +2 U^^hla *c *cosp * +2 UjjWfc 'c *coso *)] 

and the equivalent isotropic temperature factor is defined as 

«^2 3 3 

B =—YY U.a*a*d . 'd .  eq « Z-r Z-r 5 « "i 1 j 
•5 i=l j=\ 

Magnetic susceptibility 

Magnetic susceptibility meas\irements were performed to study the 

magnetic properties of some of the new phases. A powdered sample (~35 mg.) 

was enclosed in a small He-filled sealed silica apparatus. The data were 

collected on a SQUID (Superconducting Quantimi Interference Device) by J. 

Ostenson of Ames Laboratory. The temperature range studied was fi:om 6-300 

K and the field strength was varied from 0.01-3.0 Tesla. Prior to data analysis, 

diamagnetic sample holder and core corrections were applied. The data were 

analyzed with a nonlinear least-squares program®® which allowed calculation of 

the temperatTore-independent term Xo> the Weiss constant 0, and the effective 

magnetic moment 11^^. Results of the magnetic studies are presented under the 

specific compoxmds measiired. 
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RESULTS AND DISCUSSION 

Yi6Br2oItii4 

Yi6Br2oRu4 was the first rare-earth metal bromide discovered that contains 

REjeZ^ oligomeric units. At the time of its discovery, the only other known rare-

earth metal haUde containing this type of oligomer was the analogous ¥16120^^4.®^ 

The synthesis of another compotind built of these oligomers suggested that the 

RE 16^4 unit might be considered a new building block in reduced rare-earth 

metal halide structural chemistry. 

Synthesis 

The compound was obtained firom a reaction between YBrg, Y foil and Ru 

powder loaded as Y^BrgRu and heated at SSO'C for 24 days. The phase formed 

in 40% yield as black chxmks and aggregates of intergrown black crystals. The 

remaining sample consisted of a mixtiu'e of YBrg (white plates), YOBr (orange 

transparent plates), YgRuj (irregular gray chunks), and another unidentified 

phase. Higher jdelds of Yi6Br2oRu4 (60-85%) were obtained fi:om reactions loaded 

as Y5Br7Ru, Y^BrgRu, and YgBrgRu, all to which a small amount of AlBrg (-15 

mg.) was added. The reactions were heated at 750°C for four days, slowly 

ramped (+5°/hr) to 850''C and maintained there for foiir days, then ramped again 

(-i-3°yhr) to 950''C. The reactions were heated for two more weeks at 950''C, 

followed by a slow cooling ramp to 700°C before turning off the furnace. 

Additional reaction products included YBrg, YOBr, and a small amovint of a 

different unidentified Y-Br-Ru compovmd which exhibits a powder pattern nearly 
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identical to that of Y2oBr36lr4 (discussed in a later section). Yi6Br2oRu4 was 

obtained in nearly theoretical yield from a reaction heated under conditions 

similar to those just mentioned and loaded as CsYgBrioRu (slightly Ru deficient 

for YigBrgoRuJ. Other reaction products were CsgYgBrg (observed powder pattern 

matched the stronger lines of a pattern calculated from the structure of CsgYgIg,®® 

hexagonal, a=7.87 A, c= 19.68 A, but was not a perfect match), and small 

amounts of YBrg and YOBr. CsgYgBrg was formed in all reactions where Cs (as 

CsBr) was introduced, presumably exhausting the available alkali metal; the 

binary phase, CsBr, was not evident. The compound, Yi6Br2oRu4, was also 

observed in a reaction heated at 1100°C for 14 days followed by quenching, 

displaying a relatively high stability with respect to thermal decomposition. In 

virtually all cases, the reaction products consisted of a multiphase mixture of 

some combination of staiting materials, YOBr, Y-Ru intermetaHic phases, 

Cs3Y2Br9, and rare-earth metal halide cluster phases. Sometimes the combina­

tions were in violation of the phase rule, indicating that thermodynamic 

equilibrium had not been reached. The presence of AlBrg and Cs3Y2Br9 seemed 

to aid the formation of Yi6Br2oRu4, presxmiably by increasing the mobility of YBrg 

in the gaseous state (with the former) or by acting as a flux (with the latter). 

Identification of all reaction products was complicated by the presence of a 

number of other phases that seem to occur in the Y-Br-Ru system, most of which 

have not been structurally characterized to date. 
I 

1 

! 

i 
t I 
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Structure determinatioii 

The powder pattern of the phase contains fotir strong low-angle lines that 

resemble those present in patterns calculated for the hypothetical YgBrioRu 

(YgljoRu structure^) and YioBrigRug (GdioCli8C4 structure^®). Comparison to the 

powder pattern of Y16I20RU4 also showed marked similarities in line positions, 

although many of the line intensities were very different (largely due to the 

differences in scattering factors between I and Br). Based on previous resialts 

of a partial structure refinement,®' the compound was thought to consist of 

infinite chains of condensed, centered Y octahedra similar to those seen in 

A block-like black chunk picked firom a reaction loaded as Y4Br5Ru was 

used for the single crystal structure determination. A simimary of data 

collection and refinement paj:ameters is given in Table 2. Data collection was 

performed at room temperature on a Rigaku AFC6R automated difiractometer 

using Mo Ka radiation. A random search located 20 reflections with an average 

intensity of 16,300 coimts which indexed to a primitive tetragonal cell. The 

Laue class 4/mmm was suggested by the diffractometer software and confirmed 

by axial photos. A hemisphere (h,±k,±l) of data was collected between the 20 

limits of 1° and 50°, followed by measiu^ement of three psi scans which resulted 

in a large transmission range of 0.194-1.000. 

Structure solution began with data reduction, which included Lorentz-

polarization corrections and an empirical absorption correction based on an 

I 
I 
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Table 2. Crystallographic data for Yi6Br2oKu4 

Crystal data 

Formula Y4Br5Ru 

Space group, Z P4.-/rmTn, 8 

a(Ar 11.662(1) 

c (A) 16.997(2) 

V(A^) 2311.6(6) 

(g/cm^) 4.920 

]i (Mo Ka, cm'^) 383.2 

Data collection 

Crystal dimensions, mm 0.11 X 0.17 X 0.34 

Dififractometer Rigaku AFC6R 

Radiation, wavelength (A) Mo Ka, 0.71069 

Scan mode CO 

Octant meastared h, ±k, ±1 

20^3,, deg. 50 

Refinement 

N^o. of measured rejections 8508 

No. of independent reflections 1248 

No. of indep. reflections (I>3ai) 589 

No. of variables 55 

Transmission coefficient range 0.194 - 1.000 

Secondary extinction coefficient 6.4(4) X 10'® 

Ravg (I>0) 0.171 

R, R^ 0.0322, 0.0321 

Largest residual peak, e/A® 1.62 (2.27 A from Br2), -2.09 

° Gmnier cell constants &om 23 lines 
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averaged transmission curve. Intensity statistics strongly indicated a centro-

symmetric space group. The data set exhibited systematic absences for 

reflections of the type hkO: h+k=2n+l, indicating the presence of an n-glide 

perpendictdar to the c-axis. Also, a majority of Okl and hOl reflections with 

h+k=2n+l were iinobserved, suggesting the presence of a second n-glide along 

the a- and b-axes. However, due to the presence of twelve observed reflections 

violating the Old: k+l=2n condition, initial structure solution attempts were 

performed in space groups P4/mnm and P4/n. Data averaging in these space 

groups gave a slightly lower Laue class 4ym than for 4/minni (1.6.5% vs. 

17.1% for all data). Direct methods (SHELXS-86) provided several solutions 

with reasonable bond lengths and coordinations; however, most of the refine­

ments converged with R~25%. After reevaluating the extinction conditions, 

solution was attempted in the space group P42/nnm, disregarding the violations 

to the Okl: k+l=2n condition reqioired by the second n-glide. Direct methods 

yielded a solution with dearly defined Y and Ru atoms arranged in REigZ4 

cluster imits. All data with I>0 were averaged in this space group, resulting in 

a Rayg of 17.1%. The halide atoms were located fi:om subsequent difference 

Fourier calculations. The refinement was straightforward and resulted in final 

R-vaiues of 3.22% and R„=3.2i%. Table 3 lists positional parameters and 

anisotropic thermal parameters vdth their associated errors. The largest peak 

in the final difference Fourier map was 1.62 e/A® , located 2.21 K fi:om Br2. The 

largest negative peak had a value of -2.09 e/A®. Only four reflections had 
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Table 3. Positional and thermal parameters for YigBr2oRu4 

Atom TVpe x y z B(eq) U„ Ujg U33 U,2 U,g U23 

Ru 8m 0.1481(1) -x 0.31976(7) 0.87(3) 0.0112(5) 0.0112 0.0107(6) -0.0013(9) 0.0005(5) -0.0005 

Y1 8m 0.1369(1) -x 0.47892(8) 1.13(4) 0.0161(8) 0.0161 0.0108(7) -0.001(1) 0.0001(6) -0.0001 

Y2 8m 0.1167(1) -x 0.15603(9) 1.03(4) 0.0128(7) 0.0128 0.0136(8) -0.000(1) 0.0017(5) -0.0017 

Y3 16n 0.1329(1) 0.0815(1) 0.32601(7) 1.00(5) 0.0138(8) 0.0110(7) 0.0133(5) -0.0003(6) -0.0002(6) 0.0005(5) 

Brl 16n 0.1245(1) 0.3481(1) 0.33899(6) 1.28(6) 0.0183(8) 0.0142(8) 0.0162(6) -0.0019(7) 0.0014(5) 0.0010(5) 

Br2 8m -0.1124(1) -x 0.3395(1) 1.48(5) 0.0174(8) 0.0174 0.022(1) 0.003(1) 0.0002(5) -0.0002 

Bra 8m -0.1222(1) -x 0.0212(1) 1.53(4) 0.0193(8) 0.0193 0.0195(9) -0.000(1) -0.0053(6) 0.0053 

Br4 81 0.1196(1) x 1/2 1.24(4) 0.0181(8) 0.0181 0.0110(7) -0.001(1) 0.0007(6) -0.0007 
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observed structure factors that deviated from those calculated for the fbial model 

by greater than five times AF/oF. No problems with the anisotropic thermal 

parameters were noted; for most atoms, the U-values did not deviate far from 

the isotropic values. Based on the quality of the refinement and the similarity 

to the structure of Y16I20RU4, P4^/nT>m was determined the correct space group. 

The observed extinction violations were probably due to impurities or a small 

satellite on the surface of the crystal and were not indicative of a lower 

symmetry. 

The powder pattern calculated from the structiire model is in excellent 

agreement vdth the observed powder pattern. Lattice parameters based on 23 

uniquely-indexed lines resialted in a tetragonal cell with dimensions of 

a=11.662(l) A and c=16.997(2) A. 

Structural description 

The structxire of Yi6Br2oRu4 consists of Y16RU4 clusters within a coordina­

tion sphere of Br ligands. The phase, isostructural with Y16I20RU4, can be 

thought of as containing small bits of intermetallic pieces surroimded by a cloud 

of halide atoms. The halide atoms form a shield aroxmd the clusters, effectively 

isolating each from its neighboring clxisters. The tetragonal unit cell contains 

two cluster units, one centered at (1/4, 3/4, 1/4) and the other at (3/4, 1/4, 3/4). 

The 20 atom metal cluster, shown in Figure la, consists of a tetrahedron 

of Ru atoms surrounded by a larger polyhedron of Y atoms. This polyhedron can 

be described as a distorted tetra-capped truncated tetrahedron. Its arrangement 
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YioRUJ 

f 

Figure 1. Illustration of a) the Y16RU4 clxister (42m sjnnmetry, ~[110] view) as 

derived from a b) truncated tetrahedron or from c) pairwise condensa­

tion of YgRu octahedra. S is vertical. Ru atoms are quarter-shaded. 

I 
I 
I 

! 
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can be visualized by considering a tetrahedron which has been cut across each 

comer such that four nearly hexagonal faces are created, as illustrated in Figure 

lb. Replacement of each vertex of this polyhedron by a Y atom, accompanied by 

a Y atom capping each of the hexagonal faces, results in a Y^g tetra-capped 

truncated tetrahedron. In Yi6Br2oRu4, Y1 and Y3 atoms make up the truncated 

tetrahedron and Y2 atoms cap the pseudo-hexagonal faces. In actuality, the Yjg 

polyhedron has 42m (Dgj) symmetry; the 3-fold axis necessary for ideal 

tetrahedral symmetry is absent. This can be seen by a comparison of the bond 

distances and angles within the cluster. Tables 4 and 5 present bond distances 

and angles for both Yi6Br2,)Ru4 and Y16I20RU4. Notable differences are present 

within the Y1-Y3-Y3 triangular faces; in the bromide, the Y3-Y3 edge (d=3.535(3) 

o e o 
A) is shorter by nearly 0.1 A compared to the Y1-Y3 distances of 3.629(2) A. 

However, the Ru atoms which center the Y polyhedron form an ideal tetrahedron 

within experimental error. Similar features are present in Y16I20RU4. 

An alternative description, emphasizing the importance of Y-Ru bonding 

in the structure, is obtained by viewing the metal cluster as an oligomer of YgRu 

octahedra. Consider a pair of two edge-sharing octahedra oriented at 90° with 

respect to each other, as shown in Figure Ic. Sharing of the shaded atoms by 

both fragments results in an oligomeric 20 atom cluster, composed of condensed 

centered octahedra. It is convenient to use these centered octahedra as a 

reference in the larger cluster; then, in the upper right octahedron of the 

oligomer (Figure la), Y1 can be described as occupying an apical position, Y3 
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Table 4. Important bond distances in Yi6Br2oRu4 and Yigl2oRu4 

YigBrjoRu^ Y15I20RU4 Yi6Br2oRu4 Yl6l20^1^4 

Ru-Ru (x2) 3.357(2) 3.572(3) Y3-Ru 2.686(2) 2.684(2) 

Ru-Ru 3.360(3) 3.572(3) Y3-Y1 3.629(2) 3.662(2) 

Ru-Yl 2.712(2) 2.714(3) Y3-Y2 3.715(2) 3.794(2) 

Ru-Y2 2.798(2) 2.804(2) Y3-Y2 3.736(2) 3.803(2) 

Ru-Y2 (x2) 2.831(2) 2.837(3) Y3-Y3 3.535(3) 3.581(3) 

Ru-Y3 (x2) 2.686(2) 2.684(2) Y3-Y3 3.779(3) 3.920(3) 

<^Ru-Y 2.757 2.760 Ciys-y 3.679 3.752 

Yl-Ru 2.712(2) 2.714(3) Y3-Xl'-» 2.937(2) 3.123(2) 

Yl-Yl 3.731(5) 3.870(2) YS-Xl'" 2.953(2) 3.132(2) 

Y1-Y2 (x2) 3.685(2) 3.769(2) Y3-xr' 3.118(2) 3.417(2) 

Y1-Y3 (x2) 3.629(2) 3.662(2) Y3-X2'-® 2.890(3) 3.115(2) 

dyi-Y 3.672 3.746 Y3-X4" 2.981(1) 3.218(2) 

Y1-X2'' 3.113(2) 3.467(3) <^Y3-X 2.976 3.201 

Y1-X3" (x2) 2.905(2) 3.097(2) Xl"-Y2 3.134(2) 3.309(2) 

Y1-X4'' (x2) 3.019(2) 3.223(2) xr"-Y3 2.937(2) 3.123(2) 

<^Y1-X 2.992 3.221 Xl'»-Y3 2.953(2) 3.132(2) 

Y2-Ru (x2) 2.798(2) 2.804(7) Xl'''-Y3 3.118(2) 3.417(2) 

•vo u.. 0 X2'-'-Yl •J 11 oroA «» 

Y2-Y1 (x2) 3.685(2) 3.769(2) X2'"-Y3 (x2) 2.890(3) 3.115(2) 

Y2-Y2 4.398(4) 4.284(2) X3''-Y1 (x2) 2.905(2) 3.097(2) 

Y2-Y2 (x2) 4.458(3) 4.337(3) X3''-Y2 3.015(2) 3.199(3) 

Y2-Y3 (x2) 3.715(2) 3.794(2) X4'-'-Yl (x2) 3.019(2) 3.223(2) 

Y2-Y3 (x2) 3.736(2) 3.803(2) CO
 

(x2) 2.981(1) 3.218(2) 

Jb 
u, Y2.Y 3.712 Z.1Z% V V ^0 rri >o« 1 J. >3.94 

Y2-X1''' (x2) 3.134(2) 3.309(2) ^Y-Y 3.687 3.761 

Y2-X3" 3.015(2) 3.199(3) '^Y-X 3.000 3.219 

<^Y2-X 3.094 3.272 

a and i designate outer (terminal) and inner (bridging) connectivity of the halide to Y atoms, 
b Y2-Y2 distances not included. 
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Table 5. Important bond angles in YigBrjoRu^ and Yi6l2oI^U4 

YigBr2oRu4 YielaoRUi YjeBrjoRu, Y16I20R114 

Y1 Ru Y2" 165.52(9) 169.57(5) Y1 Y3" Yy 60.86(3) 60.73(3) 

Y1 Ru Y2° 83.93(5) 86.16(6) Y1 Y3' Y3 118.87(5) 119.22(4) 

Y1 Ru Y3" 84.50(6) 85.46(6) Y2" Yy Y2' 73.51(6) 69.62(5) 

Y2" Ru Y2' 104.76(5) 100.49(7) Y2" Yy Yy 61.59(2) 61.84(3) 

Y2" Ru Y y  84.61(5) 86.78(6) Y2" Yy Y3 59.79(3) 59.05(3) 

Y2' Ru Y2' 103.62(8) 99.63(4) Y2° Yy Yy 96.64(4) 95.30(3) 

Y2' Ru Y3® 85.85(4) 87.72(4) Y2' Yy Y3 59.25(4) 58.82(4) 

Y2' Ru Y3' 164.15(7) 168.45(7) Yy Yy Y3 120.74(2) 120.53(2) 

Yy Ru Yy 82.29(8) 83.72(7) Y2' XI Yy 75.37(5) 72.22(3) 

Ru Ru Y1 91.75(4) 90.66(4) Y2' XI Y3' 75.64(5) 72.31(3) 

Ru Ru Y2 101.35(4) 97.84(4) Y2^ XI Y3»2 177.74(5) 172.89(5) 

Y2 Y1 Y2 73.29(7) 69.27(5) Y3" XI Yy2 102.37(5) 101.79(4) 

Y2 Y1 Y3 61.43(3) 61.54(4) Y3" XI Yy2 104.05(6) 102.96(4) 

Y2 Y1 Y3 95.91(5) 94.55(6) Y3' XI Yy 79.82(5) 77.62(5) 

Y3 Y1 Y3 58.29(5) 58.54(5) Yr X2 Yy 100.15(7) 99.40(4) 

Y1 Y2 Y1 60.83(7) 61.90(4) Y3' X2 Yy 75.39(7) 70.17(5) 

Y1 Y2 Y3 58.56(4) 57.85(3) Yr X3 Yl' 79.91(9) 77.48(4) 

Y1 Y2 Y3 118.74(6) 119.39(5) Yl' X3 Y2' 76.97(5) 73.51(6) 

Y1 Y2 Y3 119.12(4) 119.76(4) Yiii X4 Yli2 98.44(8) 97.61(3) 

Y1 Y2 Y3 165.53(7) 169.08(6) Yl' X4 Yy 74.43(4) 69.30(5) 

Y3 Y2 Y3 163.96(7) 167.97(6) Yiii X4 Y3i2 100.30(5) 102.56(5) 

Y1 Yy Y2" 96.95(5) 95.68(5) Y3" X4 Y3" 172.1(1) 168.14(6) 

Y1 Yy Y2' 60.02(5) 60.61(4) 

ax and e refer to axial and equatorial positions in pseudo-octahedral coordination around a Ru 
site. 

i and a designate inner (bridging) and outer (terminal) connectivity of the halide with respect 
to the metal atoms of an oligomeric cluster. Numbers 1 and 2 are added when the connections 
involve two oligomers. 
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occupies two equatorial positions, and Y2 occupies two equatorial positions and 

the lower apical position. Any use of nomenclature defined for octahedral 

coordination is with respect to the centering atom (Ru) of a given octahedron. 

Bond distances within the cluster are comparable to those found in other 

reduced rare-earth metal halide compoimds. The Y-Ru distances in Yi6Br2oRu4 

range fi-om 2.686(2) A to 2.831(2) A, with an average of 2.757 A. The corre­

sponding distances in the iodide cluster are nearly identical. These distances 

are well within the range of Y-Ru distances observed in other Ru-centered Y 

octahedra, as in YgljoRu®" and YglgRu,"^ and are shorter than the sum of the 

single bond metallic radii of Ru and Y of 2.862 A given by Paiiling.®® Bond 

distances between Y atoms range from 3.535(3) A to 3.779(3) A with dy.y = 3.687 

A, which corresponds to a Pauling bond order of 0.17. Each Y1 and Y3 atom is 

bonded to five other Y atoms in the cluster. Y2 atoms are bonded to six other 

Y atoms; the increase in coordination nttmber is accompanied by a slight 

increase in the average Y2-Y bond distance compared to the average Yl-Y and 

Y3-Y distances. The average Y-Y distance observed in Yi6Br2oRu4 is about 0.07 

o 
A smaller than those of the iodide phase. This change is most likely due to 

differences in matrix effects caused by the coordinating halides. The Y-Y 

distances are similar to those in other reduced rare-earth metal halides and in 

Y metal where dy.y = 3.55 A, 3.65 A.®® The Ru atoms are separated by a distance 

of 3.36 A, corresponding to a Pauling bond order of 0.04, implying that Ru-Ru 

bonding is nearly negligible. 
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The YgRu "octahedra" in both Yi6Br2oRu4 and Y16I20KU4 are very irregular. 

A large deviation from ideal octahedral geometry is evident in the bond angles 

as well as distances. Especially in the bromide, the Ru atom is shifted toward 

the center of the oligomer, ie. toward the other Ru atoms, and is not in the 

center of the octahedron; trans angles in the bromide are 165.5° and 164.2° (x2) 

and the Yl-Ru-Y3 and Yl-Ru-Y2®^ angles are notably smaller than 90°. The Y1 

atom mimics the movement of the Ru atom, maintaining its apical position; the 

Ru-Ru-Yl angle is 91.8°. The Y2 atoms deviate the farthest from ideal 

octahedral geometry; the Ru-Ru-Y2 angle is 101.3° and the Y2-Y2 distances are 

over 0.7 A longer than the other Y-Y distances that define the "octahedron" 

aroimd each Ru atom. Similar distortions from octahedral geometry are present 

in Y16I20RU4, but with a smaller magnitude. 

Deviation of the Y atoms from ideal octahedral coordination around the 

Ru can be better xmderstood by imagining the pairwise condensation of YgRu 

octahedra. In figure Ic, the ideal octahedra fit together perfectly to form a 

tetramer, but leave one apical Y atom (Y1 in the Y16RU4 oligomer) from each 

octahedron with only four other coordinating Y atoms. Meanwhile, the Y atoms 

fusing the octahedra together (Y2 in the Y16RU4 oligomer) maintain bonding 

distances to seven other Y atoms. Such disparity in metal coordination is 

uncommon in rare-earth metal halide cluster chemistry. However, if these 

apical Y atoms (Yl) were to shift toward each other and toward the center of the 

oligomer, an additional Y-Y bond could form without losing the Y-Y bonding 
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already present. This shift woxald in turn reqiiire the Ru atoms to shift toward 

each other to maintain siiitable Y-Ru distances. Shortening of the Ru-Ru 

distances would bring them in close proximity to the foior Y atoms (Y2) that fuse 

the octahedra together, resxilting in iincomfortably short Y-Ru contacts. In 

response, these Y atoms (Y2) could move away from the center of the oligomer, 

losing an equatorial Y-Y bonding interaction, but allowing closer approach of the 

remaining six coordinating Y atoms to each other. This scenario, while 

describing a fictitious condensation of pairs of octahedra, is consistent with the 

geometry of the Y16RU4 oligomer and could explain how Y-Y interactions are 

optimized without sacrificing Y-Ru bonding. Shortening of Yl-Yl distances could 

be a driving force for the displacement of the Ru atoms toward each other (and 

toward the center of the oligomer), especially since Ru-Ru bonding appears to be 

minimal. Interestingly, the largest distortions observed upon substitution of the 

I by Br result in a marked decrease in the relevant Yl-Yl and Y3-Y3 bond 

distances (new bonds formed upon "pairwise condensation"), accompanied by an 

increase in the Y2-Y2 distances. The magnitude of these changes is twice the 

average change in Y-Y distances between the iodide and bromide phases. This 

demonstrates the important role that halide coordination has on the cluster 

geometry as well. In many metal halide cluster phases, replacement of I by Br 

results in a decrease in matrix or steric effects^® (due to packing requirements 

of the larger I atoms in an infinite crystalline array) and perhaps allows the 

cluster more geometric freedom. In this structure, the smaller size of the Br 
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necessitates changes in the cluster geometry, evident predominantly as smaller 

average Y-Y bond distances and correspondingly smaller Ru-Ru distances. 

The halides exhibit four distinct modes of connectivity to the Y atoms, 

corresponding to their foiar crystallographically different positions. The four Yl-

Y1-Y2 triangular faces created by the formation of Yl-Yl bonds are capped by 

Br3 atoms, as shown in Figure 2a. These Br3 atoms are bonded only in an inner 

(bridging) fashion to Y atoms in one oligomer. In Figure 2b, eight of the twelve 

Y2-Y3-Y3 triangular faces aroimd the waist of the oligomer are capped as shown 

by Brl atoms. These Brl atoms are also exo (outer or ausser) to Y3 atoms of a 

neighboring cluster, and are designated as Br""® and Br®"' connections. Figure 3a 

shows Br4" atoms (shaded) that bridge the Y1-Y3 edges of two oligomers 

simtoltaneously, with eight connections per oligomer. In the same picttire, Br2'"® 

and Br2""' atoms (open ellipsoids) bridge Y3-Y3 edges of one oligomer while 

occupying the site exo to Y1 atoms in an adjacent oligomer. The inner-inner and 

inner-outer fimctionality is commonly seen in metal halide cluster chemistry, the 

latter particularly in compounds having larger X:M ratios. Capping of triangular 

faces is less common, having been seen more often in binary metal halide 

systems and a relatively small nxmiber of interstitially-stabilized rare-earth 

metal compounds, including Y4Br40s.'''" Capping of triangiilar faces on the 

oligomers allows the Y atoms to achieve coordinative saturation, while 

maintaining an overall stoichiometry which fialfills the electronic requirements 
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Figure Two bromine (open ellipsoids) bonding modes adopted by a) Br3 

atoms capping Y1-Y1-Y2 triangular faces and b) Brl atoms capping 

Y2-Y3-Y3 triangular faces while bonding exo to the adjacent cluster. 

S is vertical. 
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of the clxister vinit. When this bonding mode to a Y,6 cluster is adopted, the size 

of the capped Y faces results in suitable Y-X bond distances, while the halide 

atoms maintain approximately octahedral coordination aroxmd three Y atoms. 

The shortening of Y-Y bonds in the bromide accomodate the decreased "reach" 

of the Y-Br bond compared to that of Y-I. Still, the Y-Br-Y angles indicate that 

the bromides have widened their "reach" to span the edges within the triangular 

faces compared to Y-I-Y angles in the iodide; Yl-Br3-Yl and Y3-Brl-Y3 angles 

are nearly 80°, with the Y2-Brl-Y3 and Yl-Br3-Y2 angles nearer to 76°, larger 

than in the iodide phase in both cases. In Y4Br40s, face-capping Y-Br-Y angles 

range from ~68-77°, and cap smaller Y triangles. 

Thirty-six Br atoms surroimd each cluster (Figure 3b), satisfying the 

bonding requirements of each Y atom and precluding further cluster condensa­

tion. In Figure 3b, heavier Y-Ru and Y-Br bonds emphasize the octahedral 

network about each Y atom. The Y-Br bond distances range from 2.890(3) A to 

3.134(2) A with an average value of 3.00 A. The range of bond lengths is slightly 

larger than observed in Y4Br40s, but the average values are comparable, even 

with the large differences in structxire, Y4Br40s consisting of infinite chains of 

Os-centered square antiprisms of Y atoms. Each Y1 and Y3 atom is bonded to 

five Br and one Ru atom in a pseudo-octahedral configuration. These Y atoms 

are withdrawn slightly from the square plane formed by coordinating bromides; 

trans Br-Y-Br angles at these vertices are ~156°. Each Y2 atom is bonded to 

three Br and three Ru atoms, the Y2 being shifted toward the three Ru atoms 
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1—O 

Figure 3. a) [110] view showing the bonding modes of Br2 (crossed) and Br4 

(quarter-shaded) atoms, 70% ellipsoids, b) Y16RU4 cluster with its 36 

atom coordination sphere. Br (open), Y (quarter-shaded), Ru (cross-

hatched). 5 is vertical in both pictures. 
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and away from the halides. In all cases, the Y-Br distances trans to a Ru atom 

within a given "octahedron" are considerably longer than the Y-Br distances in 

the other positions. This trend is consistent with observations in other rare-

earth metal halide clusters/® where the interstitial atom appears to be "winning" 

over the opposing halide atom. In fact, four of the five longest Y-Br distances 

observed are trans to a Ru atom. 

The Br and Ru atoms together may be viewed as forming roughly cubic-

close-packed layers, shown in Figure 4, which lie parallel to (223), (223), (223) 

and (223). The Y atoms nil pseudo-octahedral holes aroimd groups of Ru atoms, 

resxilting in coordination by six heteroatoms. The layers stack imperfectly in an 

..ABC., manner. Figure 5 (compare to Figure 3b) reveals that near the 

oligomers, the Y layers are offset slightly toward the Ru positions which 

themselves are shifted out of the Br layer. This feature does not correspond to 

a large change in Y-Br distances between layers; the Br atoms are displaced 

accordingly within the layers. Yet, a small increase in distances is observed 

between the Br and Y layers directly above the hexagonal face of the oligomer, 

corresponding to the presence of a larger number of halides in a position trans 

to Ru atoms. The close-packing of halide atoms is a regular feature of metal 

halide structural chemistry, and again indicates the importance of metal-halide 

interactions in these structures. 

Each oligomer is surrounded by twelve others and is connected to eight 

of these adjoining oligomers through two types of Br bridges. The first of these 
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Figure 4. [223] view of nearly cubic close-packed layers of Br and Ru atoms. 

Y atoms occupy pseudo-octahedral holes around the Ru positions. 
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Figure 5. A Y16RU4 cluster and nearby bromine atoms viewed parallel to the 

close-packed layers. 
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bridges, pictured in Figure 6a, joins each oligomer to four other oligomers 

within the a-b plane via Brl" ® and Brl® " connections forming a square network 

at z=l/4. The smallest intercluster Y-Y distances in this plane are 4.72 A and 

4.79 A along the a- and b-axes between Y3 atoms. Each cluster is related to the 

next by a unit cell translation of ±a and ±b and is in an equivalent orientation. 

A second layer at z=3/4 fits directly above the holes of the first layer (±a/2, ±b,2), 

resulting in an ...AB... stacking pattern. The second bridge is via Br4"', Br2'"® 

and Br2"" connections, shown in Figure 6b. Each cluster is bridged to four 

neighbors firom the adjacent layers forming a pseudo-tetrahedral array. These 

clusters are related by an n-gHde and differ in orientation from the central 

cluster by a 90° rotation around the c-axis, bringing the Y3-Y1-Y3 triangles face 

to face with each other. Intercluster Y-Y distances are 4.57 A between Y1 atoms 

and 4.61 A between Y1 and Y3 atoms. Foxir other clusters not connected via 

halide bridges form a second pseudo-tetrahedron, oriented such that Y hexagons 

are face to face. The shortest Y-Y distances between these clusters are over 6.5 
e 
A. Accordingly, each cluster sits in an approximately cuboctahedral environ­

ment, with eight near-neighbor clusters and four more distant neighboring 

clusters. 

Magnetic susceptiblKtv measurements 

Based on the formula, each Y16RU4 cluster has 60 electrons available for 

metal-metal bonding. Extended Hiickel calculations indicated that YiglgoRu^ has 

a closed-shell configuration with a calculated band gap of 0.3 eV.®^ A similar 

I 
i 
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Figure 6. Intercluster bonding a) via Brl atoms to form a square network 

within the a-b plane and b) via Br2 and Br4 atoms resulting in a 

pseudo-tetrahedral arrangement of bridged clusters. 
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bonding scheme was expected for Yi6Br2oRu4. To confirm this, magnetic 

susceptibility measurements were performed on a powdered sample of Yi6Br2oRu4 

obtained by separation of a reaction product based on visual inspection. The 

data, presented in Figure 7, exhibit nearly T-independent paramagnetism at 

high temperatxires, with a supposed Curie tail at T<60 K. The molar susceptibil­

ity at 300 K is 8.54 x 10"® emxi/mol. Although the compoxmd might be expected 

to exhibit diamagnetism, the observed temperature-independent behavior is not 

inconsistent with a closed-shell configuration. Other metal halide cluster 

compoimds have also exhibited temperature-independent paramagnetic 

behavior.®" This has been attributed to intrinsic van Vleck paramagnetism,®^ 

arising fi*om interactions between groimd and excited-state functions in the 

presence of a magnetic field. The tail at low temperature may be due to a 

paramagnetic impurity. In addition to Yi6Br2oRu4, the sample contained small 

amounts of AlBrg (~15 mg. was added to the reaction to enhance crystal grovrth), 

YBrg, and "YgBrgRu", the latter two phases identified by the weak presence of 

their strongest line in the powder pattern (~5%). It is possible that small 

amounts of other impiorities were also present, giving rise to the observed low-

temperature behavior. 

YisBr24lr4 

Yi6Br24lr4 is the second known example of a reduced rare-earth metal 

halide built up of isolated RE16Z4 cluster units sheathed by halogen atoms. The 

compoimd exhibits a new structure type, which is related to the structures of 
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Figure 7. A plot of the magnetic susceptibility as a fimction of temperature for 

Yi6Br2oRu4 at 3 T. 
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YigBrgoRu^ and the analogous iodide. Formation of this new structiire can be 

imderstood as a response to the replacement of the Ru by Ir in the Y16Z4 unit 

and the resvilting electronic differences, which are accommodated by foiar new 

Br atoms and a new structure type. With the discovery of this phase, in 

addition to the aforementioned Yi6Br2oRu4 and the related Gd2ol28Mn4,®® the 

cluster has been established as a new building-block in reduced rare-

earth metal halide structural chemistry. The novel oligomeric nature of the 

cluster provides an alternative mode of cluster condensation to those previously 

seen, e.g. infinite chains, double-chains, or three-dimensional networks. 

Synthesis 

Yi6Br24lr4 was first observed in a reaction between YBrg, CsBr, Y foil, and 

Ir powder loaded with the composition CsYgBrnIr, in an attempt to either 

incorporate Cs into a cluster phase or enhance crystal growth of Yi6Br24lr4. The 

reaction was heated quickly to 750°C, allowed to react for four days, then 

ramped slowly (+5°/hr) to 850°C. After another four day reaction period at this 

temperatiire, the reaction was again ramped (+3°/hr) to 950°C, where it was held 

constant for two weeks before cooling slowly (-5°/hr) to 700°C and then quenched. 

The reaction product consisted of ~50% Yi6Br24lr4 as agglomerates of black 

brittle crystals and chtmks grown in and aroimd a mixture of plate-like YBrg 

(~10%), YOBr (-15%), and CsgYjBrg (-25%); the Cs was incorporated into the 

ternary phase, leaving the remaining material with a composition slightly Ir-

deficient for producing Yi6Br24lr4. A reaction with a similar composition, 
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CsYgBrjoIr, was heated even more slowly (over a period of 15 days) to 950°C, 

followed by a 14 day reaction period. In this case, YgoBrgglr^ (discussed in the 

next section) was observed (~20% yield) in addition to the phases mentioned 

above; the products seem to be dependent not only on temperature but on 

reaction time as well. Increasing the amount of Cs to the composition 

CsaYgBrjoIr forestalled formation of any cluster phase, and instead yielded both 

CsgYgBrg and CsBr in addition to Yglr, YOBr, and a trace amount of YBrg. 

The phase Yi6Br24lr4 was also synthesized in analogous reactions 

containing Rb and K. The reactions, loaded as RbYgBrioIr and KYgBrioIr, were 

heated slowly (as in the first reaction mentioned) to 900°C and held there for five 

weeks. The reaction products consisted of the cluster phases YjgBrjJr^ and 

YgBr^oIr, along with Yglra, YOBr, YBrg, and weak lines tentatively assigned to 

RbgYgBrg and KgYBrg, respectively. 

The phase was observed only in reactions that contained alkali metals; 

the alkali-metal halide reacted with YBrg to form a ternary halide, which 

presimiably acted as a flux and promoted growth of Yi6Br24lr4. Reactions loaded 

without alkali-metal halides over a wide range of M:Br ratios both larger and 

smaller than 2:3 yielded instead the phase Y2oBrg6lr4 or other products. Based 

on the results of a single crystal X-ray difiraction study, there is no evidence 

that the alkali metals were incorporated into the phase. The relatively low 

yields of the reactions were largely due to the reactivity of the alkali metals with 

the other reactants, which constamed much of the YBrg and altered the 
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stoichiometry of the remaining components. It woxild be interesting to attempt 

the synthesis of the phase in the presence of a different fliix, i)erhaps an 

alkaline-earth metal halide, that wovdd be less reactive to the other components 

of the system. If a sxaitable flux were found, the synthesis should result in 

higher yields of the phase. 

Structure detennination 

The crystal used for the structural determination was from the reaction 

loaded as CsYjBrnIr. The black crystal was block-shaped with irregular 

surfaces, having been cut out of a larger aggregate of crystals. A Laue photo of 

the crystal suggested a rather large unit cell and indicated that the crystal 

quality was adequate for further study. A preliminary peak search procedure 

on a Rigaku automated diffractometer foimd 15 peaks that indexed to an F-

centered orthorhombic cell with lengths of 11.72 A, 22.39 A, and 44.69 A. At a 

later date, a second peak search on the same crystal located 27 peaks with an 

average intensity of -3200 counts, 25 of which indexed to a primitive 

orthorhombic ceU with 11.17 A, 22.30 A, and 5.84 A. Axial photos confirmed the 

presence of three mirror planes, but indicated that all three cell lengths were 

double these values. After transforming the cell to the larger values, the 

dimactometer software yielded a primitive orthorhombic unit cell matching 

those found originally. An initial data collection of 360 reflections using an 

omega scan mode uncovered several observed reflections unique to a prirtjitive 

cell (h+k=2n+l, h+l=2n+l, k+l=2n+l were observed), but closer examination 
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revealed that most had very asjnmnetrical backgrounds. In addition, these 

violations to F-centering were adjacent to stronger reflections allowed by F-

centering. Several reflections unique to the primitive cell were scanned and 

foimd to be simply mis-indexed, i.e. the scanning range for neighboring peaks 

overlapped due to the large size of the c-axis. The omega scan width had been 

determined based on the peak shape from the search procedtare, and could not 

be narrowed further without risking loss of peak intensity. Based on these 

considerations, no violations to the F-centered cell could be confirmed, and 

subsequently, a quadrant (=h,k,l) of data was collected on the F-centered cell to 

a TnayiTrmm 20 of 50°. Due to the relatively weak scattering power of the 

crystal, a scan speed of 87min. was employed. Following data collection, three 

psi scan measurements were performed, which exhibited a significant transmis­

sion range of 0.342-1.000. 

After data reduction, including Lorentz-polarization corrections followed 

by an empirical absorption correction based on the averaged transmission curve, 

the data were examined for possible extinction conditions. Intensity standards 

indicated that no decay correction was necessary, and the p-factor (fudge factor) 

was calculated and reset to 0.002. In addition to the reflection conditions 

required by F-centering, the data exhibited extinction conditions for reflections 

of the type 0kl:k+l5i2n, h01:h+l9i2n, hk0:h+k5i2n, h00:h5t4n, OkO:k^64n, OOLl^^n. 

Fourteen violations to hkO, hOl, and Okl conditions were observed, but were 

ignored at this point. Intensity data strongly indicated the presence of a center 
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of symmetry. These conditions are unique to the space group Fddd, which was 

used for the structure solution. 

After several trial models, provided by SHEL<XS-86, a solution was 

obtained in which eleven atoms formed Yi6lr4 cluster units and accompanying 

Br atoms. The identities of the peaks were clearly defined by geometry, peak 

height, bond distances and coordination environments. A sharp dropoff in peak 

height separated the eleven atoms fi-om the remaining peaks in the solution. 

Refinement of the positional parameters and scale factor, then isotropic thermal 

parameters yielded an R=0.076 and il„=0.092. The B-values were very small for 

the atoms, and were negative for the Ir and one Y, imtil after refinement of a 

secondary extinction coefficient. Upon anisotropic refinement of the thermal 

parameters, the ellipsoids of several atoms were not positive-definite. Even after 

a second absorption correction with the DIFABS program, four atoms were still 

not positive-definite. ORTEP drawings of the other atoms indicated a large 

anisotropic character in the x-y plane. One possible explanation for these 

problems was incorrect space group assigimient. Lowering the symmetry to 

space groups Fdd2 and F222 resxalted in major correlation problems between the 

firactional coordinates and thermal parameters of atoms equivalent in Fddd. 

Two possible alternate cells were identified, both corresponding to C-centered 

monoclinic space groups. Attempts at refinement in these cells in space group 

C2i/c resulted in similar R-values (-7%), but did not eliminate the problems with 

thermal parameters. 
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Weissenberg photos of the crystal were taken for the hOl, hll, and h21 

layers, to help determine the space group. The hOl layer confirmed the cell 

dimensions and exhibited extinctions for h+l=2n. Also, a significant ntunber of 

streaked spots were observed, which formed portions of a net not corresponding 

to the aligned crystal. This indicated the presence of a satellite on the major 

crystal which could have been responsible for the 14 observed violations to Fddd. 

The hll and h21 photos were much "cleaner", and were consistent with an F-

centered cell. Two weak "violations" were observed in the hll photo, but the 

symmetry equivalent reflections were not present. The conclusion reached was 

that the initial F-centered space group was still the best choice. 

An alternative cause for the refinement problems in Fddd was thought to 

be a systematic error in the observed structure factors. Although the presence 

of a satellite crystal coiald result in some interference with the data, it seemed 

unlikely that it would resxilt in the large systematic errors suggested by the 

thermal parameters. A more likely reason was that absorption by the crystal 

had not been adequately accotmted for. To better estimate the absorption, the 

ABSN93 program®® was employed, followed by data reduction with the CHES 

structural solution package.®® The main advantage of ABSN93 was that it 

incorporated information regarding the size, shape, and absorption coefficient of 

the crystal to apply a 29-dependent spherical correction to the data, and this was 

then modified according to the psi-scan measurements. Data collection and 

refinement information is listed in Table 6. Refinement of positional and 
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Table 6. Crystallographic data for Yi6Br24lr4 

Crystal data 

Formiila Y^Brelr 

Space group, Z Fddd, 32 

a(Ar 11.718(3) 

b(A) 22.361(7) 

c (A) 44.702(17) 

V(A^) 11,713(11) 

Dcalc (g/cm^) 4.660 

p (Mo Ka, cm'̂ ) 409.95 

Data collection 

Crystal dimensions, mm 0.16 X 0.20 X 0.28 

Difiractometer Rigaku AFC6R 

Eadiation, wavelength (A) Mo Ka, 0.71069 

Scan mode CD 

Octant measured ±h, k, 1 

2e„ax» deg. 50 
O W* O -A 

No. of measured reflections 6334 

No. of independent reflections 3092 

No. of indep. reflections (I>3ai) 1180 

No. of variables 101 

Transmission coefficient range 0.510 - 1.162 

Secondary extinction coefficient 3.3(3) X 10'̂ ° 

(I>0, I>3ai) 0.178, 0.058 

R, 0.0574, 0.0553 

Largest residual peak, e/A® 2.23 (1.75 A from Brl), -2.01 

® Guimer cell constants from 27 lines. 
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isotropic thennal parameters with this absorption-corrected data set yielded R-

values of 0.0838 and of 0.0836, along with much larger B-values for the 

atoms. The thermal parameters were refined anisotropically, with heavy 

damping, until convergence at 11=0.0689 and R„=0.0739. No problems with the 

anisotropic values were evident in the model. The difference Fourier calculation 

revealed the presence of several peaks, the largest with a value of 3.82 e/A®, that 

appeared to ring the Ir atom. Refinement after application of a DIFABS 

absorption correction yielded a difference map that showed no evidence of these 

peaks, and resulted in an R-value of 0.0628 and an R„ of 0.0637. Of the 1182 

tmique reflections, 17 had observed structure factors that deviated fi:om those 

calculated for the model by more than 5ap. Many of these were of the Okl type, 

two of which had F^^g that were particularly large relative to F^gic and could have 

resulted firom the satellite crystal. Removal of these two reflections caused a 

decrease in the R to 5.75% and R^ to 5.53%. The largest positive and negative 

peaks in the final difference Fourier map were 2.24 e/A®, located 1.75 A firom 

Brl, and -2.02 e/A®. Positional parameters and anisotropic thermal parameters 

are listed in Tables 7 and 8. 

The powder pattern calculated fi-om the structure model agrees very well 

with the observed powder pattern. The phase exhibits three strong low-angle 

lines, two of which are nearly overlapping. Only a few other lines (~6) exhibit 

intensities larger than -10% of the strongest line, while many weak lines are 

present. Lattice parameters were calculated based on 27 lines measured in a 
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Table 7. Positional and equivalent isotropic thermal parameters for Yi6Br24lr4 

Atom Type B eq 

Ir 32h 0.0238(2) 0.0728(1) 0.09899(5) 1.40(7) 

Y1 32h 0.0073(4) 0.0677(3) 0.0372(1) 2.1(2) 

Y2 32h 0.0086(4) -0.0536(2) 0.8389(1) 1.8(2) 

Y3 32h 0.0423(4) -0.0656(2) 0.3444(1) 1.8(2) 

Y4 32h 0.0092(4) -0.0497(2) 0.0952(1) 1.6(2) 

Brl 32h 0.0032(4) -0.0809(2) 0.1579(1) 2.1(2) 

Br2 32h 0.0028(4) 0.0592(2) 0.2273(1) 2.0(2) 

BrS 32h 0.0245(4) 0.0581(2) 0.5930(1) 2.1(2) 

Br4 32h 0.0156(5) 0.0635(3) 0.3433(2) 2.6(3) 

Br5 32h 0.0071(5) -0.0613(2) 0.0307(2) 2.4(3) 

Br6 32h 0.0177(5) -0.0694(3) 0.2823(2) 2.8(2) 
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Table 8. Anisotropic thermal parameters for Yi6Br24lr4 

Atom Uu ^22 U33 \J,2 Ux3 U23 

Ir 0.0186(9) 0.017(1) 0.017(1) -0.0009(9) -0.001(1) -0.001(1) 

Y1 0.028(3) 0.026(3) 0.025(3) -0.002(2) 0.001(2) -0.002(2) 

Y2 0.022(3) 0.021(3) 0.024(3) 0.001(2) -0.001(2) -0.002(2) 

Y3 0.022(2) 0.021(3) 0.024(3) -0.002(2) -0.002(2) 0.002(2) 

Y4 0.021(2) 0.020(3) 0.021(3) -0.001(2) -0.000(2) -0.001(2) 

Brl 0.025(3) 0.028(3) 0.028(3) -0.002(2) -0.001(2) 0.001(2) 

Br2 0.026(3) 0.026(3) 0.024(3) 0.000(2) 0.000(2) 0.000(2) 

Br3 0.025(3) 0.027(3) 0.029(4) 0.001(2) 0.001(3) -0.000(2) 

Br4 0.027(3) 0.025(3) 0.045(4) 0.001(2) -0.000(3) 0.003(3) 

Br5 0.046(3) 0.021(3) 0.022(3) -0.004(2) 0.003(3) 0.001(3) 

Br6 0.026(2) 0.055(4) 0.026(3) -0.001(3) 0.001(2) 0.003(3) 
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multi-phase Guinier powder pattern. 

Structural description 

Yi6Br24lr4 is built of Yi6lr4 oligomeric clusters similar to those observed 

in YjgBrjoRu^ and Y16I20RU4. The clusters are isolated from each other by Br 

atoms, which sheath each cluster \init. A major difference between this 

structure and that of Yi6Br2oRu4 is the manner of Br connectivity around and 

between cluster units. This change is a logical result of the replacement of Ru 

by Ir, which increases the number of available electrons by a total of four per 

cluster. This new structure maintains a local environment around each cluster 

similar to that seen in Yi6Br2oRu4, but the Br atoms are shared in a manner that 

resialts in the addition of four more Br atoms per cluster. This change nicely 

accommodates the four extra electrons, leaving 60 electrons for cluster bonding 

and resulting in a formtola of Yi6Br24lr4. 

The orthorhombic unit cell of Yi6Br24lr4 is face-centered and contains a 

total of eight Yi6lr4 cluster units, which are shown in Figure 8. These clusters 

can be described as distorted tetra-capped truncated tetrahedra of Y atoms 

enclosing an Ir tetrahedron. Alternatively, the clusters can be viewed as 

oligomers created upon pairwise condensation of edge-sharing Yglr octahedra. 

The clusters are centered around (1/8, 1/8, 1/8), (7/8, 7/8, 7/8), and the corre­

sponding (F-centered) symmetry-related sites, and exhibit 222 (Dj) symmetry. 

This is a much lower symmetry than was observed in Yi6Br2oRu4 (42m). 

Accordingly, the cluster contains four crystallographically distinct types of Y 
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Figure 8. [100] view of the imit cell of YigBr24lr4 illustrating the face-centered 

nature of the cluster packing; B is horizontal, S is vertical. Each unit 

cell contains a total of eight Yi6lr4 clusters. Br atoms are omitted for 

clarity. 
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atoms, as seen in Figure 9. The truncated tetrahedron is formed by Yl, Y3, and 

Y4 atoms, which correspond to Yl and Y3 in Yi6Br2oRu4; Y3 and Y4 are 

symmetry-equivalent in the Y16RU4 clusters. The pseudo-hexagonal faces are 

capped by Y2 atoms, as in Yi6Br2oRu4. Three mutually-perpendicular 2-fold axes 

intersect at the cluster center. One 2-fold axis, parallel to the a-axis, passes 

through the center of the two Y3-Y3 edges. The second 2-fold axis runs parallel 

to B and bisects the two Y4-Y4 edges. The third 2-fold axis, parallel to S, passes 

through the center of the two Yl-Yl edges. The lack of mirror symmetry is 

evident in the bond distances and angles, presented in Tables 9,10, and 11. The 

Y1-Y3 and Y1-Y4 bond lengths differ by 0.10(1) A, and Y2-Y1 distances (also 

equivalent in Yi6Br2oRu4) differ by 0.060(8) A. The lower symmetry is present 

in the Ir "tetrahedron" as well; the Ir-Ir distances range from 3.294(4) A to 

3.328(4) A. The shortest Ir-Ir distances are parallel to the two Y3-Y3 edges, 

which are also the nearest Y atoms, while the longest coincide with the two Yl-

Yl edges. 

Most bond distances within the Yi6lr4 clusters are slightly larger on 

average than those found for the Y16RU4 clusters in Yi6Br2oRu4, but are still 

smaller than were observed in Y16I20RU4. Generally, the Y-Y bond distances in 
^ 

Yi6Br24lr4 are larger than seen in the Ku phase by a few himdredths of an A or 

more, resulting in an average Y-Y distance of 3.72 A in the former (Pauling bond 

order is 0.15) compared to 3.69 A in the latter. The average Y-Y distances 

involving the five-coordinate Yl, Y3, and Y4 atoms are very similar to each 
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222 (Dg) symmetry and can be viewed as an oligomer of distorted Yglr 

octahedra. 
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Table 9. Bond distances in Yi6Br24lr4 

Ir-Ir 3.294(4) Y2-Y1 3.757(7) Y3-Ir 2.724(5) Brl-Y2'' 3.013(8) 

Ir-Ir 3.322(4) Y2-Y1 3.697(8) Y3-Br3'' 3.144(7) Brl-Y4 2.890(9) 

Ir-Ir 3.328(4) Y2-Y2^ 4.49(1) Y3-Br3 2.932(7) Brl-Y4 2.874(7) 

Ir-Yl 2.771(7) Y2-Y2» 4.47(1) Y3-Br3 2.909(8) Br2-Yl 2.828(8) 

Ir-Y2 2.825(6) Y2-Y2» 4.54(1) Y3-Br4 2.903(9) Br2-Yl 2.891(7) 

Ir-Y2 2.821(6) Y2-Y3 3.749(7) Y3-Br6 2.79(1) Br2-Y2'' 2.966(9) 

Ir-Y2 2.833(7) Y2-Y3 3.793(8) ^3-Br 2.93 Br3-Y2'' 3.122(7) 

Ir-Y3 2.724(5) Y2-Y4 3.735(7) Y4-Y1 3.689(8) Br3-Y3'' 3.144(7) 

Ir-Y4 2.750(6) Y2-Y4 3.74S(8) Y4-Y2 3.735(7) Br3-Y3 2.932(7) 

<^Ir-Y 2.787 3.747 Y4-Y2 3.749(8) Br3-Y3 2.909(8) 

Yl-Yl 3.76(1) Y2-Ir 2.825(6) Y4-Y3 3.620(7) Br4-Y3 2.903(9) 

Y1-Y2 3.757(7) Y2-Ir 2.821(6) Y4-Y4 3.81(1) Br4-Y4 2.873(8) 

Y1-Y2 3.697(8) Y2-Ir 2.833(7) C^Y4-Y 3.71 Br4-Y4'' 3.075(8) 

Y1-Y3 3.590(7) Y2-Brl'' 3.013(8) Y4-Ir 2.750(6) Br5-Yl 2.901(9) 

Y1-Y4 3.689(8) Y2-Br2'' 2.966(9) Y4-Brl 2.890(9) BrS-Yl'" 3.04(1) 

®Y1.Y 3.69 Y2-Br3' 3.122(7) Y4-Bri 2.874(7) Br5-Y4 2.90(1) 

Yl-Ir 2.771(7) <^Y2-Br 3.03 Y4-Br4 2.873(8) Br6-Yl 2.817(8) 

Yl-Br2 2.828(8) Y3-Y1 3.590(7) Y4-Br4'' 3.075(8) Br6-Y3 2.79(1) 

Yl-Br2 2.891(7) Y3-Y2 3.749(7) Y4-Br5 2.90(1) Brl-Brl 3.59(1) 

Yl-Br5 2.901(9) Y3-Y2 3.793(8) <^4-Br 2.92 Br-Br >3.70(1) 

Yl-BrS*" 3.04(1) Y3-Y3 3.81(1) 

Yl-Br6 2.817(8) Y3-Y4 3.620(7) t^Y-Br 2.937 

^Yl-Br 2.90 <^Y3-Y 3.70 UY-Y 3.721 

a non-bonding distances not included in averaging 
b corresponds to a Br atom trans to Ru 
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Table 10. , Important intracliister bond angles in YisBr24lr 4 
IT Ir Ir 59.39(7) Y1 Y1 Y2 58.9(1) Y3 Y2 Y4 57.4(1) 

Ir Ir Ir 60.23(7) Y1 Y1 Y3 121.5(2) Y4 Y2 Y4 61.1(2) 

Ir Ir Ir 60.38(8) Y1 Y1 Y4 118.7(2) Y1 Y3 Y2 60.4(2) 

Ir Ir Y1 91.30(9) Y2 Y1 Y2 73.7(2) Y1 Y3 Y2 97.4(2) 

Ir Ir Y1 94.5(1) Y2 Y1 Y3 61.9(1) Y1 Y3 Y3 120.1(2) 

Ir Ir Y2 102.7(1) Y2 Y1 Y4 96.6(2) Y1 Y3 Y4 61.5(2) 

Ir Ir Y2 101.6(1) Y2 Y1 Y3 96.3(2) Y2 Y3 Y2 74.0(2) 

Y1 Ir Y2 82.7(2) Y2 Y1 Y4 60.2(1) Y2 Y3 Y3 60.2(1) 

Y1 Ir Y2 84.4(2) Y3 Y1 Y4 59.6(2) Y2 Y3 Y4 96.8(2) 

Y1 Ir Y2 163.9(2) Y1 Y2 Y1 60.6(2) Y2 Y3 Y3 59.1(1) 

Y1 Ir Y3 81.6(2) Y1 Y2 Y3 117.5(2) Y2 Y3 Y4 60.7(1) 

Y1 Ir Y4 83.8(2) Y1 Y2 Y3 163.6(2) Y3 Y3 Y4 119.3(2) 

Y2 Ir Y2 104.8(2) Y1 Y2 Y4 59.0(1) Y1 Y4 Y2 60.8(1) 

Y2 Ir Y2 106.6(2) Y1 Y2 Y4 119.5(2) Y1 Y4 Y2 96.5(2) 

Y2 Ir VO xo 85.0(2) •V1 J. ± Y2 Y3 57.7(1) Y1 Y4 Y3 ero \ DO.OVX; 
Y2 Ir Y4 163.0(2) Y1 Y2 Y3 117.9(2) Y1 Y4 Y4 119.8(2) 

Y2 Ir Y2 105.3(2) Y1 Y2 Y4 119.2(2) Y2 Y4 Y2 73.8(2) 

Y2 Ir Y3 161.8(2) Y1 Y2 Y4 165.6(2) Y2 Y4 Y3 96.2(2) 

Y2 Ir Y4 84.2(2) Y3 Y2 Y3 60.7(2) Y2 Y4 Y4 59.6(1) 

Y2 Ir Y3 86.1(2) Y3 Y2 Y4 164.7(2) Y2 Y4 Y3 61.9(1) 

Y2 Ir Y4 84.3(2) Y3 Y2 Y4 117.6(2) Y2 Y4 Y4 59.3(1) 

Y3 Ir Y4 82.8(2) Y3 Y2 Y4 117.8(2) Y3 Y4 Y4 120.5(2) 

Y1 Y1 Y2 60.5(1) 
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Table 11. Bond angles around Y and Br in Yi6Br24lr4 

Ir Y1 Br2 100.9(2) Br2 Y2 Br3 95.8(2) Brl Y4 Br4 81.3(2) 

Ir Y1 Br2 99.1(2) Ir Y3 Br3 176.8(3) Brl Y4 Br5 86.5(2) 

Ir Y1 Br5 98.1(2) Ir Y3 Br3 102.1(2) Br4 Y4 Br4 78.4(2) 

Ir Y1 Br5 179.1(2) Ir Y3 Br3 101.5(2) Br4 Y4 Br5 87.3(2) 

Ir Y1 Br6 98.4(3) Ir Y3 Br4 99.7(2) Br4 Y4 Br5 83.3(2) 

Br2 Y1 Br2 91.8(2) Ir Y3 Br6 100.1(2) Y2 Brl Y4 78.8(2) 

Br2 Y1 Br5 160.9(3) Br3 Y3 Br3 77.6(2) Y2 Brl Y4 78.7(2) 

Br2 Y1 Br5 79.4(2) Br3 Y3 BrS 75.4(2) Y4 Brl Y4 82.6(2) 

Br2 Y1 Br6 87.1(2) Br3 Y3 Br4 80.7(2) Y1 Br2 Y1 82.3(2) 

Br2 Y1 Br5 85.0(2) BrS Y3 Br6 83.0(2) Y1 Br2 Y2 79.2(2) 

Br2 Y1 Br5 80.1(2) Br3 Y3 BrS 90.2(2) Y1 Br2 Y2 79.8(2) 

Br2 Y1 Br6 162.3(3) Br3 Y3 Br4 158.2(2) Y2 BrS Y3 76.5(2) 

Br5 Y1 Br5 81.5(2) Br3 Y3 Br6 85.5(2) Y2 BrS Y3® 177.5(3) 

Br5 Y1 Br6 90.3(2) Br3 Y3 Br4 86.0(2) Y2 BrS Y3 77.9(2) 

Br5 Y1 Br6 82.4(2) Br3 Y3 Br6 158.4(2) Y3 BrS YS" 102.4(2) 

Ir Y2 Brl 95.7(2) Br4 Y3 Br6 90.1(2) YS BrS Y3 81.5(2) 

Ir Y2 Br2 96.2(2) Ir Y4 Brl 100.5(2) Y3 BrS Y3» 104.3(2) 

Ir Y2 Br3 163.5(3) Ir Y4 Brl 100.6(2) YS Br4 Y4'' 177.4(3) 

Ir Y2 Brl 164.2(3) Ir Y4 Br4 99.8(2) YS Br4 Y4 77.6(2) 

Ir Y2 Br2 96.4(2) Ir Y4 Br4 177.3(3) •VA X •* Br4 Y4" 101.5(2) 

Ir Y2 BrS 95.3(2) Ir Y4 Br5 98.7(2) Y1 Br5 Yi" 98.5(2) 

Ir Y2 Brl 95.7(2) Brl Y4 Brl 90.6(2) Y1 Br5 Y4 79.1(2) 

Ir Y2 Br2 164.8(3) Brl Y4 Br4 88.7(2) Y1 Br5 Y4® 176.3(3) 

Ir Y2 BrS 94.1(2) Brl Y4 Br4 77.5(2) Y1 Br6 YS 79.6(2) 

Brl Y2 Br2 95.0(2) Brl Y4 BrS 160.8(3) 

Brl Y2 BrS 94.3(2) Brl Y4 Br4 159.3(3) 

a Intercluster bridging angle 
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other, as they were in YigBr2oRu4, consistent with their similar functionalities 

in the cluster. The xinique functionality of the six-coordinate Y2 atoms results 

in a larger average Y2-Y bond length than Yl, Y3, or Y4, again as seen in the 

Ru compound. Notably, the Y2-Y2 (non-bonding) distances in the Yi6lr4 cluster 

are nearly 0.1 A larger than in YigBrjoRu^. The average Y-Ir distance is slightly 

larger than the average Y-Ru distances in the Ru phase. This fact is consistent 

with the single bond radii tabulated by Pauling,®® which predict an increase of 

-0.02 A upon substitution of Ru by Ir. Interestingly, the Ir-Ir distances are 

smaller than the Ru-Ru distances in Yi6Br2oRu4, yet the shortest Ir-Ir distance 

yields a Pauling bond order of 0.05, indicating the presence of only minimal Ir-Ir 

interactions. Evidently, the placement of the Ir atoms is dictated largely by 

optimization of Y-Ir bonding. 

The Yglr "octahedra" that make up the oligomeric Yi6lr4 clusters are very 

irregular, as all Y-Y and Y-Ir distances are symmetry-inequivalent. The Ir 

atoms are drawn out of the centers of the octahedra toward the center of the 

cluster even more so than the Ru atoms in Yi6Br2oRu4; trans angles across each 

octahedron (Y2-Ir-Y) range from 163.9° to 161.8°, compared to 165.5° and 164.2° 

in YieBr2oRu4 and 168.5° and 169.6° in the iodide phase. Yet each Ir atom is 

closer to the Y atoms in the Y1-Y3-Y4 triangular face than to the three Y2 

atoms, due to the large size of Y2-Y2 distances. 

The structure contains six aystaUographically different types of Br atoms, 

which adopt fotar basic bonding modes. As shown in Figure 10, Brl, Br2, and 
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Br2 

Figiare 10. [ilO] view of the bonding modes adopted by Bri, Br2, and Br3 

^ms; 51s verfical73frand3r2 cap tnanguiar faces (Y2^Y$-Y^and 

Y2-Y1-Y1, respectively) on only one cluster, while BrS caps Y2-Y3-Y3 

faces and occupies a site exo to Y3. 
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Br3 atoms cap triangular faces on the cluster, much like Brl and Br3 did in 

Yi6Br2oRu4. However, in Yi6Br24lr4, four Brl and four Br2 atoms are bonded in 

an inner fashion to Y atoms in only one cluster, capping Y2-Y4-Y4 and Y2-Y1-Y1 

triangular faces, respectively. The Br3 atoms simultaneously cap the four Y2-

Y3-Y3 triangular faces of one cluster, while bonding exo to Y3 atoms from four 

neighboring clusters in a fashion identical to that adopted by Brl in Yi6Br2oRu4. 

The slightly larger size of the Y triangular faces in this compound compared to 

the Ru phase results in larger capping angles; Y-Br-Y capping angles for Brl, 

Br2 and Br3 range from 76.5° to 82.6°, compared to a maximum value of 79.S° 

in the Ru phase. The bonding modes of Br4, Br5 and Br6 atoms are pictured in 

Figure 11. Each of tiiese atom types bridge one edge of the triangular faces 

corresponding to the truncation of the tetrahedron, namely the Y1-Y3-Y4 face. 

The fovir Br4 atoms bridge the Y3-Y4 edges of one cluster, while occupying a 

position exo to Y4 atoms in four adjacent clusters. Similarly, the four Br5 atoms 

bridge Y1-Y4 edges of one cluster and are exo to Y1 atoms in foxu- neighboring 

clusters. These atoms have functionalities similar to, but not identical with, that 

adopted by Br2 in Yi6Br2oRu4. The foiar Br6 atoms bridge Y1-Y3 edges on only 

one cluster, a functionality common in metal halide chemistry, but not found in 

Yi6Br2oRu4. 

The structure of Yi6Br24lr4 can also be described as Br and Ir atoms 

together forming distorted cubic-close-packed layers, with Y atoms filling 

octahedral sites next to the Ir atoms. The close-packed layers, similar to those 
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1. [110] vjievv of the uoiidiiig modes adopted by Br4, Sr5, and Sr8 

atoms; 2 is vertical. Br4 and Br5 bridge the Y3-Y4 and Y1-Y4 edges, 

respectively, while bonding exo to Y atoms in adjacent clusters. Br6 

bridges only the Y1-Y3 edges of the cluster. 
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present in Yi6Br2oRu4 (shown previously in Figure 4), lie parallel to (124), (124), 

(124), and (124), which correspond to the orientations of the four triangular 

faces of the Ir tetrahedra. The shortest Br-Br contacts of 3.59 A occur between 

Brl atoms in adjacent close-packed layers. 

Each Yielr4 cluster is surrounded by a total of 36 Br atoms, as shown in 

Figure 12, where heavier Y-Br and Y-Ir bonds are drawn to emphasize the 

octahedral geometry about each Y atom. The Br atoms adopt a geometry around 

the cluster very much like that in YigBr2oRu4. This similarity is best seen by 

comparing Figure 12 to Figure 3b. The Y-Br bond distances vary from 2.79(1) 

A to 3.144(7) A, a wider range than was found in Yi6Br2oRu4, but consistent with 

the variations in Br functionality and the lower symmetry. The average Y-Br 

bond distance in Yi6Br24lr4 is 2.937 A, notable smaller than the average of 3.000 

A observed in the Ru phase, yet larger than the sum of crystal radii, 2.86 A (for 

six-coordinate Br'̂ ). The presence of shorter average Y-Br distances is consistent 

vdth the increased nimiber of Br atoms per cluster, ie. more Br atoms bonded 

only to one cluster xmit than in YigBr2oRu4, and the ensuing reduction in the Br 

coordination mmaber; Br atoms in Yi6Br24lr4 are bonded to either two or three 

Y atoms, while coordination nimibers in Yi6Br2oRu4 range from two to four. Each 

Yl, Y3, and Y4 atom is bonded to 5 Br and one Ru atom in a pseudo-octahedral 

fashion. Each Y2 atom is at the center of a distorted trigonal antiprism (or 

highly distorted octahedron) formed by a triangle of Ru atoms and a triangle of 

Br atoms. The Y-Br distances trans to Ru atoms are significantly longer than 
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Figure 12. ~[iiO] view of a Yiglr^ duster and the 36 surrounding Br atoms; c 

is vertical. Each Y (quarter-shaded ellipsoid) is octahedrally 

coordinated by a combination of Br (open) and Ir (crossed) atoms, 

which form a distorted cubic-close-packed network. 
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the other Y-Br distances around a given Y atom, and correspond to the six 

largest Y-Br distances observed in the compoxmd. Also, the atoms involved in 

outer-inner (intercluster) bonding occupy positions trans to Ru atoms, while the 

shortest Y-Br distances occxar for Br6, which is two-bonded inner to only one 

cluster. 

Every Y^glr^ cluster is connected to ten neighboring clusters via Br 

bridges. As shown in Figure 13, each cluster is connected to six adjacent 

clusters within the a-b plane, forming a pseudo-hexagonal network or nearly 

close-packed layer. Along the a-axis, the clusters are bridged by Br3 atoms, 

yielding intercluster distances of 4.74 A and 4.79 A between Y3 atoms. Along 

the b-axis, Br4 bridges diagonally between clusters, with an intercluster distance 

of 4.61 A between Y4 atoms. These close-packed layers are stacked on top of 

each other along 5 (at z=l/8, 3/8, 5/8, and 7/8) such that a diamond glide relates 

the clusters; the second cluster layer is shifted by (0,1/4,1/4) from the first, and 

is then reflected through a mirror plane perpendicular to §. The resultant 

cluster layer has been shifted by a translation of (-1/4,1/4,1/4) and contains 

clusters turned by 90° with respect to those in the first layer. A third cluster 

layer is positioned at (1/4,1/4,1/4) from the second layer, with the clusters 

oriented as in the first layer, ie. mirror images of the second layer. This 

diamond glide is repeated two more times until a layer identical to the first layer 

is found. In addition, the clusters in the layers stack vertically to create rows 

of clusters aligned alternately within the (110) and (110) planes. The shortest 
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Figure 13. [001] view of the a-b plane at z=l/S, illustrating the pseudo-

hexagonal (close-packed) cluster network. Br3 atoms (open 

ellipsoids) bridge along 2 (horizontal), while Br4 atoms (quarter-

shaded) bridge along B (vertical). 
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repeating unit along 5 includes four cluster layers. These layers are not 

isolated, but are interconnected by Br5 atoms. In Figure 14, Br5 atoms bridge 

the clusters to four neighbors (in adjacent layers) in a pseudo-tetrahedral 

manner, somewhat similar to that seen in Yi6Br2oRu4 (see Figure 6b) although 

these Yi6lr4 clusters are not related by 4 symmetrjr, the rotation angles deviates 

from 90°. Additionally, the intercluster Br5 bridge connects the truncated 

comers of the Y tetrahedra (Y1-Y3-Y4) to the cluster edge (Yl-Yl) rather than 

to the waist of the cluster, resulting in a large increase in the vertical distances 

(along c) between clusters compared to that found in Yi6Br2oRu4. The Y-Y 
o 

intercluster distance along this bridge is 4.51 A between Y1 atoms. 

In addition to the many structural similarities between Yi6Br24lr4 and 

Yi6Br2oRu4 that have been noted, dimensional relationships due to cluster 

packing and intercluster bridging also exist. The strongest relationship is 

between the a-b planes of Yi6Br24lr4 and YisBr2oRu4. The cluster orientation and 

intercluster Br bonding modes are identical along a of Yi6Br24lr4 and a and 5 

of Yi6Br2oRu4 (compare Figures 6a and 13), resulting in a cell length of ~11.7 A 

in these directions. The cluster is ~8 A across at its waist, with the (tricapping) 

interduster Br bridges accovinting for the remainder of the unit cell length. 

Whereas the a-b plane of Yi5Br2oKu4 contains rows of clusters that form a square 

network, the a-b plane of Yi6Br24lr4 consists of a pseudo-hexagonal network. 

This pseudo-hexagonal (close-packed) network can be obtained from the Ru 

structixre, as illustrated in Figure 15. On the left side of the figure, the square-
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Figure 14. [100] view of intercluster bridging connections along 5 (vertical). 

Br5 atoms bridge foxir neighboring clusters in a pseudo-tetrahedral 

fashion. 



www.manaraa.com

Yi6Br2oRu4 

53 XT b 
/1^ 

af 

Figure 15. The cluster arrangement and Br bridging in the a-b plane of YigBr24lr4 (pictured on the right) 

can be derived from that of Yi6Br2oRu4 (on the left) by shifting alternating rows of clusters by 

half a unit cell length along K (or §). Hence, Yi6Br24lr4 exhibits cell parameters related to those 

observed for Yi6Br2oRu4. 
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network of Y16RU4 dxisters at z=3/4 is pictured, along with the interduster 

bonding (Brl) within the a-b plane and the edge-bridging Br (Br2) which is 

involved in interlayer bonding. By shifting every other (identical) row of cliisters 

in this square network by 1/2 along B (or equivalently S), the pseudo-hexagonal 

network seen in Yi6Br24lr4 is generated. As seen in the Yi6Br24lr4 layer (z=l/8) 

on the right, the formerly interlayer-bridging Br atoms (Br2 in Yi6Br2oRu4) now 

bridge clusters within one layer, while the tricapping Br atoms (Brl in 

Yi6Br2oRu4) do not participate in interduster bonding. This change in the layers 

within the a-b plane of YigBr24lr4 increases the repeat length along B to two rows 

of cliisters and interduster bridges, resulting in a cell length (22.4 A) of nearly 

twice the size of a. Due to the new interduster bridging mode along B and, 

possibly, shght nesting of the cluster rows, a smaller than expected cell 

dimension is observed. Thus, the repeat length along B (22.4 A) corresponds to 

two rows of clusters and two Br4 interduster bridges. The repeat length along 

c corresponds to foTor rows of clusters and foiir Br5 interduster bridges. 

Previously, it was noted that the bonding modes of Br4 and Br5 are very similar. 

Hence, the cell parameters (b and c) of Yi6Br24lr4 are related by a factor of two. 

The c-axis lengths of the Ir and Ru phases are not closely related, due to the 

different bonding modes foimd in the phases. In Yi6Br2oRu4, the repeat length 

along 5 (17 A) is approximately twice the size of the cluster, ie. two rows of 

dusters separated by a small gap (along 5) due to interduster bridging. 
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Y2oBr36^4 

One exciting feature of the chemistry of reduced rare-earth metal halides 

containing transition metal interstitials is the rich structural diversity that they 

exhibit. This diversity is apparent in the Y—Br—Ir system, where Y2oBr3sIr4 is 

one of three known cluster phases and two currently unidentified phases. The 

known phases, the title compotind, Yi6Br24lr4, and YgBrjoIr,*' incorporate a 

variety of structiiral elements. The compound YgBrjoIr is isostructural with 

Ygljolr®^ and consists of isolated Yglr octahedra, which are connected via halogen 

bridges into infinite chains. Condensation of four Yglr octahedra into isolated 

oligomeric clusters is observed in Yi6Br24lr4. The structure of Y2oBr36lr4 again 

contains isolated oligomeric clusters, with the additional feature of incorporation 

of a second structural imit, YBr°''4/2®r'''2« chains (ch=intrachain atoms, cl=bridge 

to clusters). 

Synthesis 

Although this compound was first observed several years ago,®' its 

identification proved to be very challenging, owing to an inability to grow high 

quality single crystals of the material. In the current study, the phase was 

prepared in reactions spanning a wide range of compositions, appearing most 

often as black microcrystalline powder or small crystallites. Reactions loaded 

with metal-rich compositions of YgBrglr and YgBralr were heated at 950°C for 30 

days, followed by slow cooling (-5°/hr). The products of the first reaction type 

included small amounts (-20%) of nicely shaped black needles of YgBrjoIr and 
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aggregates of very small black gem-like crystals of YaoBrgglr^. Additional 

products were YOBr and a large amo\mt of shiny gray massive chimks 

consisting of a variety of Y-Ir intermetallic phases (Ylr, Ylrg, Yglrg) plus 

mireacted Y foil. The reaction with a smaller M:Br ratio yielded ~40% of 

YgoBrgglr^, with the balance of products consisting again of Y-Ir intermetallic 

phases (Ylr, Ylrg, and Yglrg), YOBr and even a small amoimt of YBrg. The 

reaction processes in these systems are not well understood, but clearly the 

reaction mixture was not at thermodynamic eqiiilibrium. Still, the abtmdance 

of intermetallic phases in the products suggested that the phase contained more 

Br and less Jr. 

Reactions were next loaded over a composition range from YgBrglr to 

YgBrifllr with a small amoimt (~15 mg.) of AlBrg added in an attempt to promote 

crystal growth. The reactions were heated very slowly to the final reaction 

temperature, hoping that the nimiber of crystal nuclei formed would be small, 

thereby yielding larger, higher qxiality single crystals. The reactions were 

heated at 750°C for four days, then ramped (+5°/hr.) to 850°C, held constant for 

four more days, then ramped (+3°/hr.) to 950°C. After 14 days at this tempera-

tijre, the reactions were slowly cooled (-S'/hr.) to 700'C before the furnace power 

was disconnected. The reaction loaded as YgBrioIr gave nearly quantitative yield 

of that phase, with a small amoimt (<10%) of YOBr also. The other reactions 

with smaller Y:Br ratios produced moderate to high yields (a maximum of >80%) 

of Y2oBr36lr4, again in the presence of small amoimts of Y-Ir intermetallics, 
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YOBr, and either YBrg or in one case YBrH.®® Additionally, small amoxmts 

(^5%) of an unknown phase (or phases) were present. Although the yield of 

YjoBrgglr^ increased, the resultant crystals were still very small or jxjorly shaped, 

and no single crystals coiild be located. A reaction loaded as YgBrglr with AlBrg 

added was heated at 860°C for 13 days, then 900°C for 26 days. The product 

was >80% black microcrystalline Y2oBr36lr4 with traces of YOBr and YBrg. 

Further heating of this product at 975°C for 36 days followed by quenching 

yielded, instead of Y2oBr3eIr4, a moderate amoimt (~40%) of the unidentified 

phase(s) along with YBrg and YOBr. 

A reaction loaded stoichiometrically as YgBrglr and heated slowly (over a 

five day period) to 975''C for 36 days before quenching yielded only ~20% of 

Y2oBr36lr4, with roughly equal amounts of YBrg and the imknown phase(s), and 

a small amount of YOBr. Attempts at growing single crystals under a 

temperature gradient (925-950°C) for 12 weeks were relatively imsuccessful, 

usually resulting in YBrg, YOBr, and intermetallic products. Using alkali-metal 

halides as a flux produced instead the ternary alkali-metal jrttrium bromides and 

Yi6Br24lr4. 

In summary, the highest yield of YgoBrgglr^ was obtained firom reactions 

loaded stoichiometrically or slightly Br-deficient and heated no higher than 

900°C for several weeks. The addition of AlBrg seemed to increase the yield of 

the cluster phases, but did not result in single crystals. Reactions loaded over 

a range of compositions and heated at 950°-975°C for several weeks yielded, in 
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addition to Y2oBr36lr4, moderate amounts of one or more other phases, which 

seem to be more metal-rich, but remain TonidentiiBLed because of the lack of single 

crystals. At least one such phase also resulted from decomposition of YjoBrgglr^ 

at 975°C. 

Structure determination 

The structure determination proved to be as arduous as the preparation 

of single crystals. Based on the powder pattern of YjoBrgglr^, which contains 

eight intense low angle lines (with 26<15.5'') and numerous others, a relatively 

large imit cell was expected. A small weakly scattering crystal was placed on 

a Rigaku AFC6R automated four-circle diffractometer and was indexed to a 

primitive tetragonal cell with dimensions a=8.97 A, c=22.5 A. A data set was 

collected in this cell, but despite much effort, no solution was obtained. Another 

crystal from a different reaction indexed to a larger body-centered tetragonal cell 

with a=12.69 A and c=45.09 A; the cell was related to the first one by /2a, 2c. 

This larger cell matched one calculated by the TREOR program from 29 lines in 

the powder pattern. A data set collected for this primitive cell indicated that the 

Laue class was 4/m (based on data averaging) and the cell was most likely body-

centered; although several weak violations to body-centering occurred, the 

majority of observed reflections met the condition hkl:h+k+l=2n. Unfortxmately, 

the crystal quality was not very good; photographic studies on a Weissenberg 

camera confirmed the 45 A cell, but indicated that the crystal was actually 

multiple. Structure solution again proved impossible. 
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The single crystal iised for a successful structure determination was 

obtained from a reaction loaded as Yjc^riglrg and heated at 975°C for 36 days 

before quenching. The product consisted of roughly equal amounts of black 

chunks of YgoBrgglr^, the unknown phase(s) and YBrg, as well as a minor amount 

of YOBr. Oscillation photos indicated that the crystal quality was good. 

Data collection was performed at room temperature on a Rigaku AFC6R 

automated diffractometer. A random search procedure located 25 peaks that 

indexed to the smaller tetragonal cell, a=8.97 A, c=22.51 A. The search was 

continued until 43 peaks were fotmd, which had an average intensity of ~4600 

counts. Indexing with several different combinations of 25 peaks consistently 

gave this small cell, contrary to the previovis results. Subsequently, the small 

cell was converted to the larger cell, a=12.67 A, c=45.02 A. Axial photos 

confirmed the larger dimensions and the dififractometer programs identified the 

Laue class as 4/m. A quadrant of data (±h,k,l) was collected to a maximum 29 

of 50° without imposing the body-centering condition. Due to the relatively weak 

scattering power of the crystal, the scan speed was lowered from the normal 

167min. to SVmin. Following data collection, three psi scan measurements were 

performed, which revealed a transmission range of0.422-1.000. Important data 

collection and refinement parameters are listed in Table 12. 

Data reduction included Lorentz-polarization corrections followed by an 

empirical absorption correction based on the averaged transmission ctarve. The 

standard data did not indicate significant decay of the crystal; no decay 
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Table 12. CrystaUographic data for Y2c>Br3sIr4 

Crystal data 

Fonmala YsBrglr 
Space group, Z I4i/a, 16 

a (At 12.6986(9) 

c(A) 45.11(1) 

V(A®) 7274(3) 

Dcalc (g/cm®) 4.952 

p (Mo Ka, cm'̂ ) 427.11 

Data collection 

Crystal dimensions, mm 0.11 X 0.17 X 0.19 

Difiractometer Rigaku AFC6R 

Radiation, wavelength (A) Mo Ka, 0.71069 

Scan mode CD 

Octant measured ±h,k,l 

20™ax» deg. 50 

Refinement 

A.nxj» XJJ. JUULGAOCLX C\A X OJUI.OVt/XVI'JLl.O 6813 

No. of independent reflections 3265 

No. of obs. indep. refl. (I>3(yi) 876 

No. of variables 137 

Transmission coeflficient range 0.898-1.062 

Secondary extinction coefficient 6.9(3) X 10"® 

R^^g (I>0, I>3ai) 0.260, 0.082 

R, R„ 0.0426,0.0502 

Largest residual peak, e/A® 1.61 (1.46A from Br7),-1.49 

® Gmnier cell constants from 26 powder pattern lines. 
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correction was applied. Examination of the data for possible extinction 

conditions showed that only ~7% of all possible violations to body centering 

(h+k+l5t2n) were observed. Also, the majority of these reflections occurred in Okl 

or hOl zones. Closer inspection of the data revealed that in many cases these 

"violations" to body-centering occurred adjacent to more intense peaks allowed 

by I-centering and were most likely due to misidentification of the peaks, e.g., 

(0 2 29) mistaken for (0 2 30). This problem developed because the ceU 

parameter along 5 was so large (45 A) that the peaks in reciprocal space 

overlapped, or at least the scan ranges of the peaks overlapped. Other observed 

"violations" occurred in groups of reflections difiFering only by the 1 indices, e.g., 

(0 3 14) through (0 3 20) were observed. In addition to peak misidentification, 

these violations could have resulted from intensity "streaks" along this direction 

in reciprocal space, due to crystal imperfections or impiorities on the surface of 

the crystal. In addition to the reflection conditions required by body-centering 

(h+k+l=2n), the data exhibited systematic absences for most reflections of the 

type hkO: h,k;t2n, 001: l5i4n, which are conditions for the space group M/a. 

Weissenberg photographs later confirmed this space group. Intensity statistics 

indicated a centrosymmetric space group. 

Initially, structure solution was attempted in space group I4i/a using the 

direct methods routine of SHELXS-SS to obtain a starting model. However, none 

of the several trial models calculated provided a reasonable solution, most 

resulting in R-values near 35%. Solution attempts in space groups I4/m and 14 
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proved equally futile, yielding solutions with R-values near 20%. Finally, after 

attempting refinement with several trial models in space group a solution 

containing well-defined Yi6lr4 lanits was obtained. Refinement of these Y and Ir 

positions (twelve in all) and subsequent difference Foxmer calculations resulted 

in the location of 20 other atoms; the isotropic refinement converged with an R-

value of 6.1%, but the positional and thermal parameters of all the atoms were 

strongly correlated. Examination of ORTEP drawings of the clusters within the 

unit cell suggested that a glide plane was present in the a-b plane. When the 

cluster atom positions were tested for higher symmetry, an inversion center 

relating the clusters was located, which generated the observed glide plane; the 

true symmetry of the structure was Mj/a. After transforming the coordinates of 

the cluster atoms to match the higher synametry space group, refinement and 

subsequent difference Foiirier calciilations provided the remaining Y and Br 

atoms. The isotropic refinement converged with R=0.056 and R„=0.064. Upon 

anisotropic refinement of the thermal parameters, the ellipsoids of two atoms 

were non-positive-definite. Application of a DIFABS absorption correction solved 

this problem; the isotropic refinement converged at R=0.0506, R„=0.0590 and 

anisotropic refinement yielded final values of R=0.0426, R^=0.0502. The 

anisotropic thermal parameters were generally well-behaved considering the 

relatively low observations:variables ratio, with only one atom (Brl) displaying 

a larger than normal anisotropy. The orientation of this anisotropic ellipsoid is 

perpendicular to a bridged octahedral edge, a feature similar to that seen in 



www.manaraa.com

84 

Ygliolr,^^ which can be rationalized based on the bonding mode of the atom. 

Generally, the relative sizes and shapes of the Br atom ellipsoids are consistent 

with their varying functionalities in the structure. The largest positive and 

negative peaks in the final difference Fourier calculation were 1.61 e/A®, located 

1.46 A away from Br7, and -1.49 e/A^. Only one reflection had an observed 

structure factor that deviated from those calculated for the model by more than 

Sop. Positional and anisotropic thermal parameters are listed in Tables 13 and 

14. 

The powder pattern calculated from the structure model is in excellent 

agreement with the observed pattern. Lattice parameters were calculated with 

the LATT program based on the positions of 26 Guinier powder pattern lines. 

The powder pattern of a phase tentatively identified as "Y2oBr3eRu4" (noted in the 

earlier section) has many strong low angle lines that match those of Y2oBr36lr4 

although some lines are shifted, and appears to be structvurally similar to this 

phase. Based on nine strong Guinier powder pattern lines, this new Ru-

containing phase is tetragonal with a=12.701(3) A and c=45.23(6) A. 

Structure description 

The structure of Y2oBr36lr4 is built up of two basic units or building-blocks, 

the first being Yi6lr4 oligomeric cliisters, similar to those seen in Yi6Br24lr4, and 

the second consisting of chains of edge-sharing YBr®''4^r'''2/2 octahedra. The 

Yi6lr4 clusters are encompassed by Br atoms, some of which are bonded only to 

one cluster and others that bridge between two clusters or between clusters and 
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Table 13. Positional and eqtiivalent isotropic thermal parameters for Y2oBr36lr4 

Atom Type x y z 

Ir 16f 0.1265(2) 0.2106(2) 0.15110(5) 0.6(1) 

Y1 16f 0.1411(4) 0.2057(5) 0.2118(1) 0.7(2) 

Y2 16f 0.1690(5) 0.1970(5) 0.0899(1) 0.7(3) 

Y3 16f 0.2373(5) 0.0242(5) 0.1537(1) 0.7(2) 

Y4 16f 0.1769(5) 0.2028(5) 0.3454(2) 0.7(3) 

Y5 16f 0.1518(4) 0.2004(5) 0.7171(1) 1.4(3) 

Brl 16f 0.2465(5) 0.0003(5) 0.2178(1) 1.6(3) 

Br2 16f 0.1389(6) 0.1982(6) 0.9080(1) 1.7(3) 

Br3 16f 0.1603(5) 0.1947(5) 0.2800(1) 1.7(3) 

Br4 16f 0.1548(4) 0.2023(5) 0.0231(1) 1.3(3) 

Br5 16f 0.2314(5) 0.0177(5) 0.5919(1) 1.0(3) 

Br6 16f 0.1280(6) 0.1891(6) 0.4069(1) 1.2(3) 

Br7 16f 0.1515(5) 0.1815(5) 0.6565(1) 1.7(3) 

^\j±. 
n 
V/ . 

n iQC(Qcr;\ n 778iin ^ 1.6(3) 

Br9 16f 0.1425(5) 0.2031(5) 0.5311(1) 1.6(3) 
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Table 14. Anisotropic thermal parameters for Y2oBr36lr4 

Atom Uxx U22 U33 Ux2 Ux3 U23 

Ir 0.008(1) 0.006(1) 0.007(1) 0.001(1) -0.001(1) 0.004(1) 

Y1 0.007(3) 0.011(3) 0.009(3) 0.002(3) 0.005(2) -0.002(3) 

Y2 0.011(4) 0.008(3) 0.009(3) 0.000(3) 0.001(2) 0.000(3) 

Y3 0.008(3) 0.010(4) 0.008(3) 0.000(3) -0.002(3) -0.004(3) 

Y4 0.009(3) 0.007(4) 0.011(3) -0.004(3) -0.005(2) -0.001(2) 

Y5 0.011(4) 0.019(4) 0.023(3) 0.009(4) 0.004(3) -0.002(4) 

Brl 0.049(5) 0.006(4) 0.008(4) 0.005(4) -0.009(3) 0.004(3) 

Br2 0.013(4) 0.019(4) 0.032(3) 0.005(4) -0.004(3) 0.003(3) 

Br3 0.018(5) 0.029(5) 0.016(3) -0.009(4) -0.001(3) -0.001(4) 

Br4 0.014(4) 0.025(5) 0.009(3) 0.000(4) 0.007(2) -0.003(3) 

Br5 0.015(4) 0.013(4) 0.009(4) 0.003(3) -0.006(2) 0.001(2) 

BrG 0.014(4) 0.016(4) 0.014(3) 0.004(3) 0.004(3) -0.002(2) 

Br7 0.020(4) 0.019(4) 0.024(4) 0.008(3) -0.006(3) -0.005(3) 

Br8 0.021(5) 0.028(5) 0.011(3) -0.002(4) 0.000(3) -0.006(3) 

Br9 0.014(4) 0.015(5) 0.031(3) -0.000(5) 0.002(3) 0.001(3) 
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chains. This structure can be considered an extension of the trend observed 

upon replacement of Ru by Ir in Yi6Br2oRu4, which resulted in Yi6Br24lr4 through 

incorporation of more basic Br atoms per cluster unit by replacing some Br*"' and 

Br* ® connections between the clvisters with different Br"'̂  and Br" bonding modes; 

in Yi6Br2oRu4, 32 Br atoms aroxond each cluster were involved in intercluster 

bridging, while in YigBrjJr^ only 24 Br atoms took part in intercluster bridging. 

With the addition of a YBr®'*4^Br®^2/2 chain to the structure, only 16 Br atoms 

connected to a cluster are shared by other clusters; eight other Br atoms bridge 

between clusters and chains, and twelve more Br atoms take part only in 

intracluster bonding. Remarkably, while these Br atoms are redistributed, no 

overall change is observed in the number of electrons available for cluster 

bonding; all the phases described so far maintain 60 cluster electrons. The 

YBr®^4/2Br°'2/2 chain that is assimilated into Y2oBr3eIr4 formally contains yttrium 

(III) and does not change the electron count. 

The tetragonal unit cell of Y2oBr35lr4, shown in Figure 16, is body-centered 

and contains a total of four Yi6lr4 oligomeric imits along with infinite chains of 

YBr''''4/2Br°'2/2 edge-sharing octahedra that parallel a and B. These chains consist 

of YgBr^o "dimers" coimected in a skewed fashion so that two non-opposite edges 

of each dimer are shared, forming an infinite unbranched zigzag chain. A 

variation of this style of zigzag chain occurs in ZrCl4.®® The Y atoms in the 

oligomer form a distorted tetra-capped truncated tetrahedron, which encloses an 

Ir tetrahedron oriented coincident with the outer truncated tetrahedron. The 
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Figure 16. [100] view of the Y2oBr3gIr4 unit cell, illustrating the body-centered 

nature of the cluster packing. The structiire is built of Yi6lr4 

clusters and YBr*4^Br®'2/2 chains. For clarity, only Br atoms in the 

chains are pictured. B is horizontal, S is vertical. 
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clusters are centered aroxmd (0, 1/4, 1/8), (1/2, 1/4, 3/8), and the corresponding 

(I-centered) symmetry-related sites. The clxisters possess 4 (S^) symmetry, with 

the improper rotation axis along S. As was the case for Yi6Br24lr4, the clusters 

are of much lower symmetry compared to those in Yi6Br2oRu4, which exhibited 

42m (Dga) symmetry; the 2-fold rotational axis and mirror planes are absent. 

The clusters contain four crystallographically distinct types of Y atoms, as shown 

in Figure 17. Atoms Yl, Y3, and Y4 make up the distorted truncated tetrahe­

dron, while Y2 atoms cap the four pseudo-hexagonal faces. The Yl and Y2 

atoms occupy similar sites in both YigBr2oRu4 and Yi6Br24lr4. The Y3 and Y4 

atoms in this phase sit in positions that are equivalent to Y3 in YieBr2oRu4. The 

absence of symmetry along B is clear in Figure 17, where ^ is vertical and a is 

horizontal; the clusters are oriented so that the b-axis passes through the two 

Y2-Y4 edges in the center of the picture (perpendicular to the plane of the 

paper). This orientation, in combination with the observed cluster packing, 

creates rather large holes in the structure, which are filled with YBr®*'4^Br'̂ '2/2 

chains. 

The lack of mirror symmetry within the cluster is most pronounced in the 

Y1-Y3-Y4 triangular faces, which correspond to the truncated comers of the Y 

tetrahedron. From the bond distances and angles, listed in Tables 15, 16, and 

17, the Y1-Y3 distance is nearly 0.05 A longer than the Y1-Y4 distance. 

However, the Y2-Y distances in the hexagonal faces are closer to being 

equivalent (by mirror symmetry); the horizontal Y2-Y3 distance (3.767(8) A) in 
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Figure 17. [010] view of a Yiglr^ duster (4 symmetry), illustrating the four 

crystallographically distinct types of Y atoms, a is horizontal, 5 is 

vertical. Each atom tj^je has a unique symbol. 
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Table 15. Important bond distances arotmd Y and Ir atoms in YjoBrgglr^ 

Ir-Ir (x2) 3.348(4) Y2-Y3 3.767(8) Y4-Y1 3.651(9) 

Ir-Ir 3.366(5) Y2-Y4 3.737(8) Y4-Y2 3.737(8) 

Ir-Yl 2.743(6) Y2-Y4 3.771(9) Y4-Y2 3.771(9) 

Ir-Y2 2.817(6) C^Y2-Y 3.748 Y4-Y3 3.634(8) 

Ir-Y2 2.836(8) Y2-Ir 2.743(6) Y4-Y3 3.780(7) 

Ir-Y2 2.841(7) Y2-Ir 2.817(6) 3.715 

Ir-Y3 2.756(7) Y2-Ir 2.836(8) Y4-Ir 2.732(8) 

Ir-Y4 2.732(8) Y2-Br4'' 3.022(8) Y4-Br2*' 3.133(9) 

<^Ir-Y 2.788 Y2-Br5'' 3.01(1) Y4-Br2 2.85(1) 

Yl-Yl 3.75(1) Y2-Br6'' 2.96(1) Y4-Br3 2.96(1) 

Y1-Y2 (x2) 3.745(8) ^Y2-Br 3.00 Y4-Br5 2.90(1) 

Y1-Y3 3.696(7) Y3-Y1 3.696(7) Y4-Br6 2.85(1) 

Y1-Y4 3.651(9) Y3-Y2 3.721(8) '̂ Y4-Br 2.94 

C^YI-Y 3.714 Y3-Y2 3.767(8) Y5-Y5^ 4.05(1) 

Yl-Ir 2.743(6) Y3-Y4 3.634(8) Y5-Y5" 4.08(1) 

Yl-Brl 2.946(9) Y3-Y4 3.780(7) Y5-Brl 2.86(1) 

V-l T5.,Ob X xj 
O AOO/'p\ J 

"•Y3-Y 3.720 Y5-Sr7 2.74(1) 

Yl-Br3 2.85(1) Y3-Ir 2.756(7) Y5-Br8 2.770(9) 

Yl-Br4 2.874(8) Y3-Brl 2.908(9) Y5-Br8 2.78(1) 

Yl-Br4 2.861(9) Y3-Br2 2.90(1) Y5-Br9 2.786(9) 

'̂ Yl-Br 2.925 Y3-Br5 2.867(9) Y5-Br9 2.781(9) 

Y2-Y1 (x2) q '74.KrC\ 
O. %JI 

o  o i r i \  JLV-L/ "•YS-Br 
o nrn i a 

Y2-Y2" (x3) 4.50(1) Y3-Br7'' 2.972(9) "y-y 3.726 

Y2-Y3 3.721(8) 2.911 Br6-Br6'= 3.60(1) 

a Non-bonding distances not included in averaging, 
b Br atom is positioned trans to an Ir atom, 
c All other Br-Br distances are >3.73 A. 
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Table 16. Intracluster bond angles in Y2oBr36lr4 

Y1 Ir Y2 164.3(2) Y1 Y1 Y4 120.6(2) Y4 Y2 Y4 118.3(2) 

Y1 Ir Y2 84.3(2) Y2 Y1 Y2 73.9(2) Y2 Y3 Y4 61.1(2) 

Y1 Ir Y2 84.2(2) Y2 Y1 Y3 96.2(2) Y1 Y3 Y2 95.9(2) 

Y1 Ir Y3 84.5(2) Y2 Y1 Y4 61.3(2) Y1 Y3 Y2 60.2(2) 

Y1 Ir Y4 83.6(2) Y2 Y1 Y3 60.8(2) Y1 Y3 Y4 59.7(2) 

Y2 Ir Y2 105.1(2) Y2 Y1 Y4 96.4(2) Y1 Y3 Y4 119.1(2) 

Y2 Ir Y2 104.9(2) Y3 Y1 Y4 59.3(2) Y2 Y3 Y2 73.6(2) 

Y2 Ir Y3 83.8(2) Y1 Y2 Y1 60.2(2) Y2 Y3 Y4 60.4(2) 

Y2 Ir Y4 84.7(2) Y1 Y2 Y3 165.5(2) Y2 Y3 Y4 96.3(2) 

Y2 Ir Y2 104.9(2) Y1 Y2 Y3 59.0(1) Y2 Y3 Y4 59.4(2) 

Y2 Ir Y3 164.5(2) Y1 Y2 Y4 118.9(2) Y4 Y3 Y4 120.8(2) 

Y2 Ir Y4 85.2(2) Y1 Y2 Y4 117.7(2) Y1 Y4 Y2 60.6(2) 

Y2 Ir Y3 84.6(2) Y1 Y2 Y3 118.3(2) Y1 Y4 Y2 96.4(2) 

Y2 Ir Y4 163.3(2) Y1 Y2 Y3 118.6(2) Y1 Y4 Y3 119.2(2) 

Y3 Ir Y4 82.9(2) Y1 Y2 Y4 165.1(2) Y1 Y4 Y3 61.0(2) 

Ir Ir Y1 94.1(1) Y1 Y2 Y4 58.1(2) Y2 Y4 Y2 73.4(2) 

Ir Ir Y2 101.5(2) Y3 Y2 Y3 118.3(2) Y2 Y4 Y3 59.0(2) 

Ir Ir Y3 95.2(2) Y3 Y2 Y4 58.3(1) Y2 Y4 Y3 96.9(2) 

Ir Ir Y4 92.1(1) Y3 Y2 Y4 60.6(2) Y2 Y4 Y3 60.1(1) 

Y1 Y1 Y2 59.9(1) Y3 Y2 Y4 60.5(2) Y2 Y4 Y3 60.6(2) 

Y1 Y1 Y3 120.2(2) Y3 Y2 Y4 164.5(2) Y3 Y4 Y3 120.2(2) 
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Table 17. . Bond angles around Y and Br in Y2oBrg6lr4 

Ir Y1 Brl 98.2(2) Ir Y3 Br7 177.7(4) Br7 Y5 Br8 173.2(3) 

It Y1 Br3 178.5(3) Brl Y3 Br2 86.4(2) Br7 Y5 Br8 96.6(3) 

Ir Y1 Br3 100.3(2) Brl Y3 Br5 160.3(3) Br7 Y5 Br9 89.5(3) 

Ir Y1 Br4 100.9(2) Brl Y3 Br6 85.2(3) Br7 Y5 Br9 96.1(3) 

Ir Y1 Br4 101.1(2) Brl Y3 Br7 81.2(2) Br8 Y5 Br8 85.5(2) 

Brl Y1 Br3 80.3(2) Br2 Y3 Br5 90.4(3) Br8 Y5 Br9 88.8(3) 

Brl Y1 Br3 88.8(2) Br2 Y3 Br6 161.5(3) Br8 Y5 Br9 90.4(3) 

Brl Y1 Br4 160.8(2) Br2 Y3 Br7 83.9(3) Br8 Y5 Br9 173.0(3) 

Brl Y1 Br4 85.7(3) Br5 Y3 Br6 92.0(3) Br8 Y5 Br9 89.6(3) 

Br3 Y1 Br3 79.6(2) Br5 Y3 Br7 79.2(2) Br9 Y5 Br9 86.4(2) 

Br3 Y1 Br4 80.5(2) Br6 Y3 Br7 78.7(3) Y1 Brl Y3 78.3(2) 

Br3 Y1 Br4 78.8(2) Ir Y4 Br2 178.0(3) Y1 Brl Y5 174.1(3) 

Br3 Y1 Br4 86.8(3) Ir Y4 Br2 100.3(3) Y3 Brl Y5 95.8(3) 

Br3 Y1 Br4 158.4(3) Ir Y4 Br3 97.9(3) Y3 Br2 Y4 78.3(3) 

Br4 Y1 Br4 91.7(2) Ir Y4 Br5 99.9(3) Y3 Br2 Y4 173.4(3) 

Ir Y2 Br4 164.7(3) Ir Y4 Br6 99.6(3) Y4 Br2 Y4 101.9(3) 

Ir Y2 Br5 96.2(2) Br2 Y4 Br2 77.8(3) Y1 Br3 Yl 100.4(2) 

Ir Y2 Br6 95.1(3) Br2 Y4 Br3 82.7(3) Y1 Br3 Y4 175.4(3) 

Ir Y2 Br4 95.1(2) Br2 Y4 Br5 82.1(2) Y1 Br3 Y4 78.0(2) 

Ir Y2 Br5 165.3(3) Br2 Y4 Br3 86.4(3) Yl Br4 Yl 81.8(2) 

Ir Y2 Br6 96.1(3) Br2 Y4 Br5 159.2(3) Y1 Br4 Y2 79.0(2) 

Ir Y2 Br5 95.1(3) Br2 Y4 Br6 88.9(3) Yl Br4 Y2 78.8(2) 

Ir Y2 Br6 165.2(3) Br2 Y4 Br6 79.8(2) Y2 Br5 Y3 78.6(2) 

Y4 Y2 Br4 93.4(2) Br3 Y4 Br5 86.0(3) Y2 Br5 Y4 79.3(3) 

Br4 Y2 Br5 94.3(2) Br3 Y4 Br6 162.4(3) Y3 Br5 Y4 81.9(3) 

Sr4 Br6 95.2(3) 3r5 xr i Br6 Y2 *p* uro Y3 /a.ovcj 

Br5 Y2 Br6 94.4(3) Brl Y5 Br7 86.2(3) Y2 Br6 Y4 80.1(2) 

Ir Y3 Brl 98.8(2) Brl Y5 Br8 87.3(2) Y3 Br6 Y4 82.0(2) 

Ir Y3 Br2 98.5(3) Brl Y5 Br8 92.0(3) Y3 Br7 Y5 96.8(3) 

Ir Y3 Br5 100.9(3) Brl Y5 Br9 91.8(3) Y5 Br8 Y5 94.5(2) 

Ir Y3 Br6 99.0(3) Brl Y5 Br9 177.1(3) Y5 Br9 Y5 93.5(2) 
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the closer hexagonal face (as seen in Figure 17) is within 0.5a of the correspond­

ing horizontal Y2-Y4 distance (3.771(9) A) in the opposite hexagonal face. In 

fact, the Ir tetrahedron does exhibit mirror symmetry within experimental error, 

with the Ir-Ir edges that are coincident with Yl-Yl edges 0.018(4) A longer than 

the other foiir Ir-Ir edges. This implies that a slight compression along S is 

present. A similar trend is observed in the Y2-Y3 and Y2-Y4 distances; 

horizontal Y2-Y3 and Y2-Y4 distances in the hexagonal faces are ~0.04 A longer 

than the vertical Y2-Y3 and Y2-Y4 distances. 

Despite the minor differences mentioned above, the overall geometry of 

the clusters in Y2oBr36lr4 is very similar to that of the clusters in Yi6Br2oRu4 and 

YigBrgJr^. The average Y-Y intracluster distance of3.726 A (Pauling bond order 

is 0.15) is nearly identical to the average Y-Y distance in YieBrjJr^ (3.721 A), 

and is somewhat larger than that observed in Yi6Br2oRu4 (3.687 A), the 

expansion consistent with the larger size of Ir compared to Ru. The five-

coordinate Yl, Y3, and Y4 atoms, which share a common fimctionality in the 

cluster, have comparable average Y-Y distances. The average Y2-Y distance, 

however, is longer, consistent with its unique six-coordinate environment. These 

features are also present in both Yi6Br2oRu4 and Yi6Br24lr4. The average Y-Ir 

distance in Y2oBr36lr4 of 2.788 A is nearly identical to that observed in Yi6Br24lr4 

and is shorter than the svmi of Pauling's single bond radii, 2.88 A. The Ir-Ir 

distances in Y2oBr36lr4 are slightly longer (by ~0.04 A) than is observed in 

Yi6Br24lr4; the Pauling bond order is 0.04, signifying nearly insignificant Ir-Ir 
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interactions. The location of the Ir atoms seems more dependent on the position 

of the surrounding Y atoms and the resiilting Y-Ir interactions than on their 

placement relative to other Ir atoms. 

The cluster can also be described as an oligomer of four distorted Yglr 

octahedra, generated by pairwise condensation of edge-sharing octahedra. In 

this view, the octahedra are very distorted, with the Ir atoms lying closer to the 

Yl, Y3, and Y4 atoms and farther away from the Y2 atoms. The Ir atoms are 

shifted out of the centers of the octahedra, towards the center of the cliister, 

while the Y2 atoms are shifted away from the cluster center. The magnitude of 

this distortion is evident in the bond angles aroimd Ir; trans angles across each 

octahedron range from 163.3(2)° to 164.5(2)°, values intermediate between those 

seen in Yi6Br2oRu4 and Yi6Br24lr4. The Yl and Y3 atoms deviate farther from 

their apical positions than was observed in Yi6Br2oRu4; Ir-Ir-Y angles are 94-95° 

in this phase, compared to -91° in the Ru phase. 

There are nine crystallographically distinct types of Br atoms in YgoBrgglr^, 

which adopt five basic bondiag modes. The bonding mode exhibited by Br4, Br5, 

and Br6 atoms is shown in Figure 18. Each of these atoms are bonded in an 

inner (bridging) fashion to three Y atoms that form a triangular face on only one 

cluster; Br4 caps the four Y1-Y1-Y2 triangular faces, while Br5 and Br6 cap 

eight of the twelve Y2-Y3-Y4 faces around the waist of the cluster so that each 

Y hexagon is capped by three Br atoms. In Yi6Br24lr4, half of these Br atoms 

aroimd the waist of the clusters are bridging to other clusters, while in 
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Figure 18. [010] view of the bonding modes adopted by Br4, Br5, and Br6. The 

halogens cap trianguiar faces (Yl-Y2-yi, Y2-Y3-Y4, and Y2'-Y3-Y4, 

respectively) within Y hexagons on only one cluster, a is horizontal, 

c is vertical. 
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Yi6Br2oRu4 all the Br atoms capping faces aroiand the cluster's waist form 

intercluster bridges. The Y-Br-Y capping angles range from 78.6(2)° to 82.0(2)°; 

the range of angles is smaller than observed in Yi6Br24lr4 (76.5°-82.6°), 

corresponding to a more consistent bonding mode in Y2oBr36lr4. A second Br 

functionality is depicted in Figure 19, where Br2 and Br3 atoms maintain Br" " 

bonding to the truncated comers of the Y tetrahedron. Four Br2 atoms bridge 

the Y3-Y4 edges while also bonding exo to Y4 atoms in fovir neighboring clusters. 

Similarly, Br3 atoms bridge the four Y1-Y4 edges and bond exo to Y1 atoms in 

four neighboring clusters. The fimctionalities of Br2 and BrS atoms are identical 

to those seen for Br4 and BrS atoms in Yi6Br24lr4, respectively. Figure 20 

illustrates the environments of the remaining Br and Y atoms. Four Brl atoms 

bridge the Y1-Y3 edge (the third edge of the Y1-Y3-Y4 triangular face) and also 

bond exo to Y5, the atoms that forms the YBr®''4/2Br'''2/2 chains, in a Br"'® type 

connection. The four Br7 atoms also bridge between the clusters and chains, 

bonding exo (Br® °) to both Y3 and Y5. Atoms BrS and Br9 are involved 

exclusively in YBr®^4^Br''2fij intrachain bonding, bridging between adjacent Y5 

atoms via Br°'® connections as shovm in Figure 21a. The Br9 atoms bridge Y5 

atoms that form "dimers" parallel to the a- or b-directions; a two-fold rotation 

axis perpendicular to c passes through the center of these "dimers". The BrS 

atoms bridge between "dimers", which are related to each other by an inversion 

center located midway between diagonal Y5 atoms. 



www.manaraa.com

98 

Br3 

Br2 

Figjire IS. ~[010] view of the bonding modes adopted by Br2 and Br3 atoms, 

which bridge the Y3-Y4 and Y1-Y4 edges, respectively, while 

bonding exo to Y vertices in adjacent clusters, a is horizontal, S is 

vertical. 
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Br7 lY5 

Brl 
Br8 

Figure 20. ~[010] view of the bonding modes of Y5, Brl, Br7, Br8, and Br9, 
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while bonding to Y5, while Br7 is exo (outer) to both the Y3 vertice 

and the Y5 atom. Br8 and Br9 bond exclusively within the chain, 

a is horizontal, c is vertical. 
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BR7 

Figure 21. a) the YBr 4/2®^ 2/2 chain, viewed as edge-sharing YjBrio "dimers". 

BrS bridges diagonally betv/een dimers, v»'hile Br9 bridges 

horizontally within dimers. b) ~[010] view of a Yiglr^ cluster and 

the 36 surrounding Br atoms. Y quarter-shaded, Br open, Ir 

crossed, a is horizontal, 5 is vertical in both pictures. 
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Each Yi6lr4 duster is surrounded by a total of 36 Br atoms, as shown in 

Figure 21b; the figure emphasizes the Y-Br and Y-Ir octahedral bonding 

network. The bonding arrangement of the seven crystallographically unique Br 

atoms encompassing these clusters is identical to that seen in Y^gBrjoRu^ and 

Yi6Br24lr4. The Y-Br bond distances aroimd the cluster range firom 2.85(1) A to 

3.133(9) A, with an average value of 2.94 A. This average Y-Br distance is the 

same as that observed in Yi6Br24lr4, which exhibits a slightly larger range of Y-

Br distances, and is slightly smaller than foimd in Yi6Br2oRu4. The Y-Br 

distances in the YBr"^^4^Br®^2/2 chains are shorter, with an average value of 2.79 

A, corresponding to more basic Br®"® connections. Only the Y5-Brl bond, 

bridging to a cluster edge, exhibits a longer distance, more typical of the Y-Br 

distances observed around the cluster. 

"When all coordinating Br atoms are considered, as in Figure 21b, it is 

clear that the Yi5Br36lr4 cluster unit can be derived from clusters, 

where condensation of the four Yglr units necessitates increased sharing of the 

halogens; atoms designated Br" and Br^ in MgXig clusters must now function both 

as inner and outer ligands, resulting in the observed three-fold inner edge-

bridging (or tricapping) bonding mode. Also, one inner edge-bridging halogen 

site of the MgXig imit is now occupied instead by an Ir atom. Accordingly, the 

clusters possess structural characteristics commonly seen in MgXig-based 

compounds. Due to the relative sizes of Y and Br, the metal atoms (Yl, Y3, and 

Y4) are withdrawn from the Br'4 planes on the periphery of the cluster; in 
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Y2oBr36lr4, Bi'-Y-Br' angles range from 158.4(3)* to 162.4(3)°, comparable to the 

angles observed in Zr6li4C. '̂ This trend is not observed for Y2; the geometry 

around Y2 is altered by the condensation of the Yglr octahedra. Systematic 

changes in Y-Br bond lengths tend to be afifected less by the bonding mode, e.g. 

Br" vs. Br% as observed in many ZrgXig-based cluster phases, than by the position 

of the halogen relative to interstitial atoms (Ir). For each Y cluster atom, the 

longest Y-Br distance is trans to the Ir atom and is also in an exo (outer) 

position, suggesting that the Ir atom may be more effective than the halogen at 

interacting with the orbitals on Y. 

At its most basic level, the structure of YgoBrgglr^ consists of distorted 

cubic-close-packed layers of Br and Ir atoms, with Y atoms occupying pseudo-

octahedral holes between the layers. These dose-packed layers lie parallel to (13 

4 34), (13 4 34), (4 13 34), and (4 13 34) planes, which correspond to the 

orientations of the four triangular faces of the Ir tetrahedron. The Y atoms form 

clusters by occupying sites adjacent to groups of Ir atoms. Other nearby 

octahedral holes between Br and Ir layers are also occupied by isolated Y atoms, 

resulting in the formation of YBr®^4^r®'2/2 infinite chains. A view parallel to 

these layers containing one cluster and the surrounding Br atoms plus nearby 

YBrg fragments is pictured in Figttre 22. The Ir atoms are positioned slightly 

out of the close-packed layer closer toward each other. Similarly, the layers of 

Y atoms are shifted slightly toward the cluster center. These differences in 

interlayer spacing are offset by shifts within the layers, so that suitable bond 
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octahedra viewed along the close-packed layers. Y quarter-shaded, 

Br open, Ir crossed. 
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distances and angles with the Br and Ir atoms are maintained. The shortest Br-

Br contacts of 3.60(1) A occur between Br6 atoms in adjacent close-packed 

layers, which cap Y triangles in hexagonal faces of neighboring clusters within 

the a-b plane. All other Br-Br contacts are larger than 3.70 A, the sum of van 

der Waals radii. The Y5 atoms that center the YBrg octahedra occupy sites 

between each close-packed layer and are arranged in a pseudo-tetrahedral 

fashion around the clusters. 

Each Yi6lr4 cluster is connected to eight neighboring clusters and four 

YBr"4^r®'2/2 chains through Br bridges. Figure 23 depicts the cluster arrange­

ment within the a-b plane at z=l/8. Each cluster is bridged to foxir others via 

Br2''" and Br2""' connections, creating a square network. The smallest 

interduster Y-Y distance within this plane is 4.65 A between Y4 atoms. Each 

cluster is related to the next by a vinit cell translation of ±a and ±b and is 

oriented eqxaivalently. Other synmietry-related layers of this type are located at 

z=3/8, 5/8, and 7/8; each layer is related to the others by alternating a- and b-

glide planes. The second layer is shifted halfway along 3, then reflected through 

a mirror plane perpendicular to S at z=l/4. The resultant duster layer is shifted 

by (1/2,0,1/4) from the first, with each cluster rotated by 90° aro\ind S with 

respect to the first layer. Similarly, a b-glide at z=l/2 relates the second layer 

to the third. Fo^l^ such layers of clusters are included in the unit cell. This 

vertical stacking pattern also creates rows of clusters aligned alternately (along 

5) within planes parallel to (100) and (010). 
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Figure 23. [001] view of the a-b plane of Y2oBr36lr4 at z=l/8, illustrating the 

square cluster network. Br2 atoms bridge along a (horizontal) and 

B (vertical). 
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These square cluster layer networks are not isolated but are interconnect­

ed through two types of halogen bridges, the first connecting the dusters to 

YBr°'*4^r" '̂2/2 chains via Brl and Br7 atoms. These chains are positioned at z~0, 

1/4,1/2, and 3/4, and run between the cluster layers in the a-b plane alternately 

parallel to a and then B; at z~0, the chains parallel B, while at z~l/4 they run 

along Figvire 24 shows a [001] view of the cluster layer at z=l/8, with 

YBr^^4;5Br®'2/2 chains at z~l/4 running near clusters along a. There are two 

chains below and two chains above each ¥^6^4 cluster; the chains are arranged 

in approximately tetrahedral fashion about the clusters. Figure 25 offers 

another view of the cluster-chain connections. The zigzag arrangement along the 

chain occurs in the c-direction, such that one YaBr^o "dimer" is "down" (along 5) 

and the next one is "up". Each dimer is connected to two clusters, one on each 

side of the chain, which will be referred to as 'left" and "right". Consequently, 

the positions of clusters encoxmtered as one goes along the chain are ...down-left, 

down-right, up-left, up-right,... . The Y5-Y5 distances along the chain are 4.05 

A and 4.08 A within and between dimers, respectively, too long for significant 

bonding interactions. The shortest Y-Y distance between clusters and chains is 

4.28 A between Y5 and Y3. 

The second type of interlayer connection is via Br3 atoms as shown in 

Figure 26a. These atoms bridge each cluster to fovu- neighboring clusters in 

adjacent layers in a pseudo-tetrahedral manner and are symmetry-related by a 

4 rotation around S, as were the dusters in Yi6Br2oRu4. The intercluster Br3 
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Figure 24. [001] view of the cluster layer at z=l/8, with YBr®^4^Br°'2/2 chains at 

z~l/4 running along a (horizontal). B is vertical. 
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Figure 25. Illustration of the cluster-chain connectivity along the YBr%2Br'̂ 2/2 chain. Clusters are 

connected alternately on both sides of as well as above and below the chain. 5 is vertical. 



www.manaraa.com

Figure 26. Comparison of interlayer halogen bridges along 2 via a) Br3 atoms in Y2oBrg6lr4, and b) Br5 

atoms in Yi6Br24lr4. The upper two clusters are bridged through different edges on the truncated 

comers of the Y tetrahedron, while the lower connections are identical. The clusters in 

Y2oE5r36lr4 are related by a 4 rotational axis, which is not present in Yi6Br24lr4. 
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bridge connects one edge of the truncated comers of the Y tetrahedra (defined 

by Yl, Y3, and Y4) to the (Yl-Yl) edge of a neighboring cluster in a manner 

nearly identical to that exhibited by Br5 in Yi6Br24lr4, pictured in Figure 26b. 

A comparison of Figures 26a and 26b reveals that the two lower intercluster 

bridges are identical, but the upper halogen bridges connect to different edges 

on the (Y1-Y3-Y4) truncated comer of the tetrahedron. The Y-Y intercluster 

distance along this bridge in Y2oBr36lr4 is 4.56 A between Yl atoms, only slightly 

longer than that observed in Yi6Br24lr4 (4.51 A). 

In addition to the many stmctural similarities noted between Y2oBr3gIr4 

and Yi6Br24lr4 or Yi6Br2oRu4, dimensional relationships based on cluster packing 

and intercluster bridging also exist. There is a strong relationship between the 

cluster packing in the a-b planes of Y2oBr36lr4 and Yi6Br2oRu4. The a-b planes of 

both these phases contain rows of clusters that form square networks. As seen 

in Figure 27, it is possible to obtain the network found in Y2oBr36lr4 directly from 

that of Yi6Br2oRu4. Pictured on the left side of the figure is the square network 

of Y16RU4 clusters at z=3/4, along with the intercluster bridges in the a-b plane 

via tricapping Brl and the edge-bridging Br2 that are involved in interlayer 

bonding. Rotating each cluster and the connected halogens clockwise by ~28° 

around 5 (perpendicular to the plane of the paper) results in the cluster 

orientations and intercluster halogen bridges present in Y2oBr36lr4. As seen in 

the Y2oBr36lr4 layer (z=l/8) on the right, the formerly interlayer-bridging Br 

atoms (Br2 in Yi6Br2oRu4) now bridge clusters within one layer, while the 
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Figure 27. The structural relationship between the a-b planes of Yi6Br2oRu4 (left) and YaoBrgglr^ (right). 

Clockwise rotation of each of the Y16RU4 clusters and surrounding Br atoms by ~28° results in 

the cluster orientation foimd in Y2oBrg6lr4. 
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tricapping Br atoms (Brl in Yi5Br2oRu4) do not participate in intercluster 

bonding. This new cluster orientation and the resviltant Br' " and Br® ' bonding 

modes cause a 1A expansion of the unit cell from ~11.7 A in Yi6Br2oRu4 to ~12.7 

A in YgoBraglr^. A second relationship exists between the \init cell lengths along 

S of YaoBrgglr^ and Yi6Br24lr4, due to the similarity in interlayer Br bridges 

discussed earlier. The unit cells of both phases include four cluster layers and 

four interlayer halogen bridges. Consequently, the c-axis lengths of the two 

phases are very similar. 

Magnetic susceptibility measurement 

Based on the formula Y2oBr36lr4, each Yi6lr4 cluster formally has 60 

electrons available for metal-metal bonding, as was the case for Yi6(Br,I)2oRu4 

and Yi6Br24lr4. This 60 electron count seems to correspond to a very stable 

closed-shell orbital configuration, apparently present in all the Yi6Z4-contaimng 

phases. The addition of isolated Y atoms to the phase does not change the 

overall electron coimt; enough additional Br atoms were also incorporated into 

the structure to "soak up" the extra electrons with Y-Br bonding. To confirm 

this experimentally, magnetic susceptibility measurements were performed on 

a powdered sample of >80% Y2oBr36lr4, as judged from Guinier powder pattern. 

Also present were small amounts of YBrg and AlBrg. The data, presented in 

Figure 28, exhibit nearly temperatvire-independent paramagnetism, after 

addition of a substantial diamagnetic core correction (-1.736 x 10'® emu/mol). 

The presence of a supposed Curie tail at T< 60K is most likely due to a 
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Figure 28. A plot of the magnetic susceptibility as a function of temperature 
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paramagnetic impiarity. Although the compoimd might be expected to exhibit 

diamagnetism, the observed behavior is not inconsistent with a closed-shell 

configuration. Similar temperature-independent paramagnetism has often been 

observed in metal halide cluster compounds.^ This characteristic magnetic 

behavior can be attributed to intrinsic van Vleck paramagnetism,®^ which results 

fi:om a miYing of excited state wave ftmctions with those of the groimd state in 

the presence of a magnetic field. In this phase, the molar susceptibility at 300 

K is 1.06 X 10"^ emu/mol. 

Other synthetic attempts 

In addition to the Y-Br-Ru and Y-Br-Ir systems, several reactions were 

attempted with other prospective interstitial elements. While some syntheses 

produced new phases based on Guinier powder pattern results, their structural 

characterization was not possible due to the lack of suitable single crystals. 

Exploratory synthesis over a temperature range of 900° C to 980" C in the Cr, 

Mn, and Re systems resulted in the formation of intermetallic phases (Re-Y) 

and/or tmreacted metal (Cr, Mn, Y) along with YOBr and the starting material 

YBrg. Reactions loaded with Pt (-YgBrgPt) produced a new phase, which formed 

as shiny, golden, hard chunks but whose powder pattern did not matdi any of 

the known intermetallic phases. XPS meas\irements confirmed the presence of 

Pt in the material and ruled out Nb contamination firom the reaction container. 

In metal-rich reactions (-Y^BraFe) with Fe as an interstitial, a new phase was 

formed as black needles. The powder pattern resembled those displayed by 
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layered compounds of the type GdaClgC^ and GdaBrgC,®' but some of the 

important characteristic lines of these structure types were not observed. 

Reactions with Ni as an interstitial produced a moderate yield (-40%) of black 

rods and chunks of a phase whose powder pattern resembled that of YglioRu; 

several strong lines seemed consistent with this structure type, but many 

weaker lines were absent. No single crystals of any of these phases were 

obtained. 

Sc2o.JBr28(Os,Ru,Fe,Mn)4 and Related Phases 

The stability and versatihty of the M16Z4 unit is apparent from the variety 

of structure types that contain the \mit and the range of elements incorporated 

into the oligomeric clusters. Several different rare-earth metals have been 

shown to form Mi6Z4 clusters interstitiaUy stabilized by elements from group 7 

through group 9 of the periodic table and coordinated by either Br or I ligands. 

The most prolific of the known structures that contain M16Z4 clusters was first 

discovered for Gd2ol28Mn4®® and has since been observed in the La-I system®® and 

the Sc-Br system stabilized by a variety of interstitial elements. 

Prior to this study, the Sc-Br—Z systems were imexplored, with previous 

research efforts focusing on the chloride and iodide systems. Several novel 

reduced Sc chloride phases were prepared, including SC4CI6B, ScgClgC, SC7CI10C2, 

and SC7CI12Z (Z = B, C, N)"'®®. The iodide system also provided new and unique 

compounds including ScglnCj®^ and SC7I12Z (Z = B, C, Co, Ni).^°° The smaller 

halogen (CI) stabilized compovmds exhibited more structural diversity than was 
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seen for I, while the iodides were able to incorporate 3d transition metals as 

interstitials. It seemed probable that new phases would exist with an 

intermediately sized halogen, which might exhibit new structxires as well, as was 

the case for Y4Br40s.'̂ ^ With this goal in mind, exploratory synthesis incorporat­

ing a wide range of interstitials was initiated. 

Synthesis 

Initial reactions in the Sc-Br-Z systems were very encouraging in that 

many new phases were prepared, even though several of these remain 

uncharacterized. Synthetic attempts concentrated largely on incorporating 

transition metals as interstitials; reactions were loaded with a variety of 

transition metals, twelve in all, as well as C and B. The reactions were heated 

gradiially up to the chosen reaction temperature over a period of several days 

in an attempt to minimize the number of crystal nuclei formed and thereby 

obtain large, high qiiality single crystals. ScOBr was observed in all reaction 

products in the form of light pink transparent blades which were often attached 

to the reaction tube wall; the use of higher temperatures or reloading reaction 

products for further reaction resulted in a larger amoxmt of the phase. 

Reactions loaded with Os as an interstitial yielded five new phases, based 

on Guinier powder pattern resxalts; formation of these compoimds was dependent 

on both composition and reaction temperature. A reaction loaded as Sc4Br50s 

and heated at 950° C for 2 weeks yielded approximately equal parts of Scgo. 

jjBr2gOs4 and an unidentified phase, referred to as "S5", which has an estimated 
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composition near Sc4Br40s. The two phases have very distinctive crystal habits; 

Scao-rBrggOs^ forms as black cubes or bricks, while "S5" appears as long fibrous 

black needles. A less reduced reaction composition (ScgBrnOs) heated at the 

same temperature yielded mostly Scgo-rBrggOs^ and ScBrg with just a trace of 

"S5". Several reactions were loaded with the composition Sci9Br280s4 and 

heated over a series of different temperatiH-es for 20 days or more; at 975° C, the 

products were "S5" and ScBrg, while equilibrations at 900° C and 850° C gave a 

nearly quantitative yield of Sc2o.JBr280s4 with a minute trace of "S5" (identified 

visually in the sample), and a reaction heated at 800° C yielded only Scgo. 

^r280s4. More reduced stoichiometries produced two different phases; a reaction 

loaded as ScgBrgOs and heated at 850° C for 26 days consisted of -50% 

Sci6Br2oOs4 (isostructural with Yi6Br2oRu4 based on the powder pattern), with 

minor amoimts of a second imknown, "S0s6", and SC11OS4. Heating a similarly 

metal-rich reaction at 950° C for two weeks again yielded "S5" along with "S0s6" 

and SC11OS4. Addition of NaBr to the reaction (in the composition NaSc4Br40s) 

produced, in addition to intermetallics and Na-Sc-Br ternary phases, a fifth 

phase in the form of black, matted needles and fibers, which exhibited an 

intense broad low angle line in the powder pattern and was stable at both 840° 

C and 950° C. The lattice parameters of Sci6Br2oOs4 as determined based on 34 

Guinier powder pattern lines indexed to a tetragonal cell with a=ll.116(1) A, 

and c=16.124 A. 
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The Sc-Br-Ru system seems to contain four phases, one of which has been 

structurally characterized. A reaction loaded as Sc4Br5Ru and heated to 900° C 

produced well-formed cubes of Sc2o.xBr28Ru4 in addition to ScBrg and an 

unidentified phase. Reactions loaded as Sci9Br28Ru4 produced >85% Sc2o.xBr28Ru4 

when heated at 900° C, but heating at 975° C decomposed the phase to the 

starting materials. More metal-rich compositions heated at 950' C produced 

moderate amoxmts (-30%) of two different unidentified phases in addition to Scgo. 

^r28Ru4. Reactions loaded with alkali metal (NaSc4Br4Ru) gave only ScBrg and 

Na-Sc—Br ternary phases as products. 

Exploratory synthesis in the Sc-Br-Fe system resulted in the preparation 

of two new phases, Sc2o.5Br28Fe4 and Sci6Br2oFe4, which both contain Sci6Fe4 

clusters. A reaction loaded as Sci9Br28Fe4 and heated at 950° C for 20 days gave 

>90% of Sc2o.xBr28Fe4. Reactions loaded more metal-rich (ranging from Sc4BrgFe 

to ScgBrgFeg) yielded a mixtiire of mostly Sc2o.xBr28Fe4 with a small amovint 

(^0%) of Sci6Br2oFe4 (isostructural with Yi6Br2oRu4) and, in the most reduced 

cases, Fe-Sc inter-metallic phases. Addition of NaBr to the reaction 

(NaSc4Br4Fe) produced a 60% yield of Sci6Br2oFe4 along with Sc metal and 

Na-Sc-Br ternary phases when heated at 840° C for 24 day; further heating of 

this reaction product at 950° for 20 more days caused the cluster phase to 

decompose to ScBrg and Fe. As was seen in the Y-Br-Z systems (for YigBr24lr4), 

the presence of alkali metals in the reaction results in the formation of 

Na-Sc-Br ternary phases, which presumably act as a flux to enhance the 
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formation of one cluster phase over that of another. Based on 22 Guinier powder 

pattern lines, the lattice parameters of ScigBrjoFe^ index to a tetragonal cell with 

a=10.996(1) A, c=16.021(4) A, slightly smaller than observed for the Os analogue. 

After the preparation of Sc2o.jcBr28(Os,Ru,Fe)4, attempts were made to 

synthesize the analogous Mn phase. Reactions loaded as Sc5Br7Mn were heated 

for 20 days or more at temperatures ranging from 725° C to 950° C. Reactions 

heated at 800° C or 850° C produced a moderate (~35%) to small amount of black 

crystalline Sc2oBr28Mn4, a small amount of MnaSc, and a large quantity of black 

fibrous material (commonly resembling "mouse fur") whose powder pattern 

matched that reported for ScgBrg.^"^ Reactions heated at both higher and lower 

temperatures resulted in only Sc^Brg and MnjSc. Addition of NaBr (loaded as 

NaSc^Br^Mn) to a reaction heated at 840° C for 25 days yielded only ScBrg, Mn 

metal and Na-Sc-Br ternary phases. 

Preliminary reactions in the Sc-Br-Ir system have produced three new 

phases. A reaction loaded as ScgBrnIr and heated at 950° C for two weeks 

produced (~25%) thin black needles along with both ScBrg and IrSc. This new 

Ir-containing phase, designated "S5'", exhibited a powder pattern very similar 

to that observed for S5 (Os system), except with the line positions slightly 

shifted. The yield of S5' increased to 50% in a reaction with the loaded 

composition of Sc4Br5lr and heated in the same manner. Again, this material 

formed as thin black needles in the presence of IrSc and a small amoiuit (-10%) 

of ScBrg. Oscillation photographs of a selection of these fibrous crystals 
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indicated a cell length of ~9 A along the needle direction, but the crystal quality 

was poor; all the spots were badly streaked. A reaction loaded slightly more 

metal-rich (Sc4Br4lr), when heated at 800° C for 20 days, gave S5' and a second 

unidentified phase in nearly equal yield, suggesting that the reaction tempera­

ture was a significant factor. A third xmknown phase was formed when NaBr 

was added to the reaction (loaded as NaSc4Br4lr). The powder pattern of this 

phase matched that exhibited by an imknown in the analogous Os reaction, with 

the lines shifted to slightly lower angles than in the Os case. Unfortunately, no 

good single crystals of either of these phases were obtained. 

Reactions involving Co and Ni metal as a sotirce of interstitial produced 

the phases ScjBrigCo and Sc7Bri2Ni in moderate to high yield. A reaction loaded 

as Sc4Br4Co and heated at 950° C for two weeks gave a high yield of Sc^BrigCo, 

with CoScg and CoSc as products also, while heating a stoichiometric reaction 

(ScyBrigCo) at 850° C for 26 days gave a slightly lower jdeld of ScyBrigCo, with 

leftover ScBrg and an iinidentified phase. Reactions loaded as Sc^BrgNi and 

ScyBr^gNi and heated at 850° C for over 25 days both yielded ScyBrigBr; the 

former reaction also contained a moderate (30%) amotmt of intermetallics (NiSc, 

NiScj), while the latter contained small amounts of both ScBrg and NiSc. The 

lattice parameters of Sc7Bri2Co (space group R3) indexed to a cell with 

a=13.795(l) A, c=9.585(l) A, based on 27 Guinier powder pattern lines. Cell 

parameters of the analogous Ni phase are a=13.795(2) A, c=9.493(l) A, obtained 

from 23 Guinier powder pattern lines. The length of the a-axis is identical for 
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both phases, while the c-parameter is slightly larger for the Co phase as 

expected based on the atomic radii. The c/a ratios of these two phases are 

similar to those observed in the isostructural (Sc) iodide phases, whose clusters 

also possess both 18 and 19 electron counts. 

Attempts to incorporate other transition metals were less successful. 

Reactions with Z = Cr, Cu, Rh, and Pt at 850° C or higher yielded mostly ScBrg 

and intermetallics or unreacted (Z) metal and occasionally ScaBrg. A reaction 

with Pt Goaded Sc4Br5Pt) was heated at 775° C and produced >50% of an 

unknown phase in addition to PtSc. A reaction loaded Sc4Br5Re and heated at 

850° C for 10 weeks gave a new phase that formed as black fibrous needles 

(mouse fur) and exhibited two low angle lines in the Guinier powder pattern. 

When heated at 975° C for 20 days, this phase decomposed to ScBrg and RejSc 

along with a second unknown phase. 

A few attempts to incorporate main group elements were also made. 

Reactions with compositions near Sc4Br5C were heated at 900° C and yielded 

ScjBrijC®^ and three other xmidentified phases, which again grew as black 

fibrous material. Reactions loaded in similar ratios with B as a prospective 

interstitial resulted in two new phases, which form as black powder at both 850° 

C and 950° C, along with ScBrg and ScBj. One of these phases exhibits a powder 

pattern that closely resembles that of ScglnCg.^ 

Structure determinatiops 

A black cube picked from a reaction loaded as Sc5Br70s was tised for the 
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single crystal structure determination of Sc2o.xBr280s4. A summary of data collec­

tion and refinement parameters is given in Table 18. Data collection was per­

formed at room temperature on a Enraf Nonius CAD-4 automated diffract-

ometer using Mo Ka radiation. A random search located reflections that indexed 

to a primitive cubic cell. The diffractometer programs identified the Laue class 

as m3m. A hemisphere (±h, k, ±1) of data was collected between the 20 limits 

of 1° and 50% followed by measurement of three psi scans which exhibited a 

transmission range of 0.418-1.000. 

Structure solution began with data reduction, which included Lorentz-

polarization corrections and an empirical absorption correction based on an 

averaged transmission curve. Intensity statistics strongly indicated a noncentro-

synmietric space group. No extinction conditions were present in the data, so 

the acentric space group P43m was chosen for the refinement. Direct methods 

(SHELiXS-86) readily provided a solution containing three Sc atoms, three Br 

atoms and one Os atom. Isotropic refinement of the model resulted in a 

reasonable K-value, but the thermal parameters were very smaU and even went 

negative for the Os atom. Anisotropic refinement gave R=0.032 and R„=0.035 

but did not solve the temperature factor problem. After application of a 

spherical 20-dependent absorption correction and subsequent data reduction with 

the CHES program,®^ the thermal parameters were more reasonable and 

isotropic refinement gave R and values of 0.038. However, the resviltant 

thermal parameter of Sc3 was over three times larger than those of the other Sc 
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Table 18. CrystaUographic data for SciggdjBrggOs^ 

Crystal data 

Formula SC4.72(3)Br7O s 

Space group, Z P43m, 4 

a(A)» 11.0032(3) 

V(A3) 1332.2(1) 

(g/cm®) 4.795 

(Mo Ka, cm'̂ ) 325.52 

Data collection 

Crystal dimensions, mm 0.20 X 0.20 X 0.20 

DiflGractometer Rigaku AFC6R 

Radiation, wavelength (A) Mo Ka, 0.71069 

Scan mode CO 

Octant measiired ±h, k, ±1 

20„^, deg. 50 

Refinement 

iNu. ui uica&uTcu. icueCciuixa 4981 

No. of independent refl. 489 

No. of indep. refl. (I>3ai) 422 

No. of variables 33 

Transmission coeff. range 0.418 -1.000 

Secondary extinction coefi. 9(3) X 10 ® 

(I>0) 0.066 

R, R„ 0.0347, 0.0338 

Largest residual peak, e/A® 1.44 (1.00 A from Os), -1.10 

 ̂ Gtiinier cell constants from 32 lines. 

I 
I 
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atoms; refinement of the multiplicity of this site with the B fixed indicated that 

the position was less than fuUy occupied (the occupancy differed firom 100% by 

over 6a). By refining the thermal parameter and the mtoltiplicity of this atom, 

the isotropic refinement converged at R=0.0374, R„= 0.0352. Anisotropic 

refinement proceeded smoothly and the last cycle converged with R=0.0347 and 

R„=0.0338. The final occupancy of Sc3 refined to 72(3)%, giving a composition 

of Sci8.9(i)Br280s4. The largest positive and negative peaks in the final difference 

Foiuier map were 1.44 e/A^, located 1.00 A from Os, and -1.10 e/A®. Table 19 

lists the positional and anisotropic thermal parameters for the phase. The 

powder pattern calculated fi:om the model is in excellent agreement with the 

observed powder pattern. Lattice parameters were determined based on 45 

Guinier powder pattern lines. 

The structure determination of Sc2o.J3r28Ru4 was accomplished with a 

crystal fi:om a reaction loaded as Sc4Br5Ru. Table 20 lists important data 

collection and refinement parameters. Room temperature data were collected 

on a Rigaku AFC6R diflfractometer. A random search procedure located 24 

peaks that indexed to a primitive cubic cell. The difiractometer programs 

identified the Laue class as m3m. An octant (h, k, 1) of data was collected 

between the 20 limits of 1° and 70°, followed by measurement of three psi scans 

which resulted in a transmission range of 0.516-1.000. 

After data reduction including Lorentz-polarization corrections and an 

empirical absorption correction based on the averaged transmission curve, the 
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Table 19. Positional and thermal parameters for Sci8g(iyBr28084 

Atom Type x y z u„ U22 U33 U,3 U,3 

Os 4e 0.0973(1) x x 1.1782(4) 0.014921(5) u„ U„ -0.0006(5) Vn 

Sol 12i 0.1169(3) x 0.3286(4) 1.4(1) 0.021(2) U„ 0.013(2) 0.002(2) -0.001(1) U,3 

Sc2 4e -0.1386(5) x x 1.552(2) 0.01965(3) U„ Un 0.002(2) u,. 

Sc3' 4e 0.3840(4) x x 1.714(4) 0.02170(5) U„ u„ -0.001(3) U12 

Brl 12i 0.1274(1) x 0.6027(2) 1.55(6) 0.0201(9) U„ 0.019(1) -0.001(3) 0.0007(8) U.3 

Br2 12i 0.3651(1) x 0.1259(2) 1.88(7) 0.022(1) U„ 0.029(2) 0.001(1) 0.0026(8) U,3 

BrS 4e -0.3735(3) x x 2.55(1) 0.03231(2) U„ u„ -0.001(1) U.2 U,2 

' Occupancy of Sc3 was refined to 0.72(3) 
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Table 20. Crystallographic data for Scjg g6(8)Br2gRu4 

Crystal data 

Formula ^^4,74(2^^^7^'^ 
Space group, Z P43m, 4 

a(A)^ 10.9897(5) 

V(A3) 1327.26(6) 

Deaic (g/cm®) 4.3709 

|i (Mo Ka, cm'̂ ) 242.24 

Data collection 

Crystal dimensions, mm 0.17 X 0.22 X 0.25 

Dififractometer Rigaku AFC6R 

Radiation, wavelength (A) Mo Ka, 0.71069 

Scan mode CO 
Octant measured h, k,l 

20„«x» deg. 70 

Refinement 

No. of measured reflections or>oo oooo 
No. of indei)endent refl. 653 

No. of indep. refl. (I>30i) 394 

No. of variables 33 

Transmission coeff. range 0-871 - 1.095 

Secondary extinction coeff. 1.8(1) X 10-' 
R^,,(I>0,I>3ai) 0.235, 0.076 

R, R„ 0.0420, 0.0375 

Largest residual peak, e/A® 3.26 (2.28 A from Brl), -2.26 

® Guinier cell constants from 28 lines. 
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data with I>0 were averaged in P43ni. Using the atomic positions of Scgo. 

j^r280s4 as an initial model, the isotropic refinement proceeded smoothly to 

values of R=0.054 and 0.066. As seen in Sc2o.xBr280s4, the thermal parame­

ter for Sc3 refined to a value three to four times larger than the thermal 

parameters of the other Sc atoms. Refinement of the multiplicity of this position 

while fixing the thermal parameter indicated that the site was partially occupied 

(the occupancy difiered fi:om 100% by 5a). By refining the multiplicity and 

thermal parameter of this atom, the multiplicity settled near 79% occupancy and 

gave more reasonable Sc thermal parameters, although the B for Sc3 was still 

larger than for the other two Sc atoms. Isotropic refinement with this new 

multiplicity converged with an R=0.051 and E,„=0.062. Anisotropic refinement 

was imeventful; the last cycle converged at R=0.043 and R„=0.056. Refinement 

after application of a DIFABS absorption correction gave slightly better results, 

with R=0.042 and R^= 0.0375 and a final refined composition of Sci8.96(8)Br2gRu4. 

The largest positive and negative peaks in the final difference Fourier 

calculation were 3.26 e/A®, located 2.28 A fi:om Brl, and -2.26 e/A®; the largest 

peaks, which were located at higher symmetry sites, did not stand out 

considerably from the backgrotmd. Rather, there was a relatively steady 

decrease observed in the intensity of the difference peaks. Table 21 lists the 

positional and anisotropic thermal parameters for this phase. The powder 

pattern calculated fi:om the model is in excellent agreement with the observed 
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Table 21. Positional and thermal parameters for Scj90(i)Br28Ru4 

Atom Type x y z Be, u„ U22 U33 U,2 U,3 U23 

Ru 4e 0.0990(1) x x 0.3099(4) 0.003925(5) u„ u„ -0.0003(5) u,2 

Scl 12i 0.1171(2) x 0.3284(3) 0.57(6) 0.008(1) Un 0.005(1) 0.000(1) 0.0024(8) U,3 

Sc2 4e -0.1381(3) x x 0.376(1) 0.00477(1) u„ U„ -0.001(1) u,. 

Sc3' 4e 0.3821(4) x x 0.915(2) 0.01159(2) u„ U„ -0.002(2) U,2 U.2 

Brl 12i 0.1282(1) x 0.6031(2) 0.83(4) 0.0123(6) Un 0.0070(9) -0.0006(7) 0.0016(4) U:3 

Br2 12i 0.3643(1) x 0.1246(2) 1.12(4) 0.0120(6) u„ 0.018(1) -0.0012(7) 0.0042(6) U.3 

Br3 4e -0.3739(2) x x 1.785(1) 0.02260(1) u„ u„ -0.0028(9) U.2 U.2 

' Occupancy of Sc3 was refined to 0.74(2) 
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powder pattern. Lattice parameters were calculated with the LATT program 

from 28 Guinier powder pattern lines. 

A single crystal study of Scgo-xBrggMn^ was performed on a black crystal 

taken from a reaction loaded as Sc5Br7Mn. Table 22 lists important data 

collection and refinement parameters. The data were collected on an Enraf-

Nonius CAD-4 dififractometer at room temperature. A random search procedure 

located reflections that indexed to a primitive cubic cell; the Laue class was 

determined to be m3m. One octant of data was collected between the 29 limits 

of 4° and 56°, followed by measurement of three psi scans which displayed a 

transmission range of0.474-1.000. Following data reduction and the application 

of an empirical absorption correction based on the averaged transmission curve, 

the data with I>0 were averaged in P43m to yield Ravg=0.094. The positional 

parameters for Sc2o.xBr280s4 were used as an initial model. Isotropic refinement 

gave an R of 0.047 and of 0.054 with a somewhat large thermal parameter 

for Sc3 (twice as large as for the other Sc atoms). Refinement of the multiplicity 

of Sc3 with the thermal parameter fixed resxilted in a smaller occupancy of the 

position, but still within 3a of 100% implying that the site should be fiiUy 

occupied. However, refinement of the mialtiplicity and B together reduced the 

R to 0.045 and 0.052 and resulted in 89(2)% occupancy of the position with the 

B value still notably larger than those of Scl or Sc2 atoms. Anisotropic 

refinement with the occupancy fixed at 100% proceeded smoothly to yield an R= 

0.040 and R^=0.043. Anisotropic refinement with the Sc3 multiplicity varied 
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Table 22. Crystallographic data for Scig56(8>Br28Mn4 

Crystal data 

Formula S^4.89(2)®^7^^ 

Space group, Z P43m, 4 

a(A)» 10.941(9) 

V(A«) 1310(1) 

(g/cm®) 4.227 

]i (Mo Ka, cm"^) 244.1 

Data collection 

Crystal dimensions, mm 0.28 X 0.27 X 0.19 

Diflfractometer Enraf Nonius CAD-4 

Radiation, wavelength (A) Mo Ka, 0.71069 

Scan mode 0) 

Octant measoired ii,k,l 

2e„3x» deg. 56 

Refinement 

r«o. of measured reScctions 1820 

No. of independent refl. 438 

No. of indep. refl. (I>3ai) 304 

No. of variables 33 

Transmission coeff. range 0.474 -1.000 

Secondary extinction coeff. 7.1(4) X 10"' 

(I>0, I>3ai) 0.094, 0.061 

R, R„ 0.0371, 0.0432 

Largest residual peak, e/A^ 1.78 (0.87 A from Sc3), -1.55 

® Guilder cell constants from 13 lines. 
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also gave R= 0.037 and E,„= 0.043. The largest positive and negative peaks in 

the difference Foiirier calciilation were 1.78 e/A®, located 0.87 A away from Sc3, 

and -1.55 e/A®. Positional and anisotropic thermal parameters are given in Table 

23. It is difficult to judge whether the paiiial occupancy is truly significant or 

is just an artifact of the refinement, especially considering the proximity of the 

largest residual electron density peak to Sc3. Sc is the lightest element in the 

structure, and the Sc3 atom would be expected to have a larger thermal 

parameter just based on its environment within the structure. If the partial 

occupancy is real, the composition of the phase is Scig 56(8)Br28Mn4, which is closer 

to the parent Gd compoimd than was observed for the Os and Ru phases. The 

powder pattern calculated from the structure model agrees very well with the 

observed powder pattern. Lattice parameters were determined from 13 liaes in 

a mialtiphase Gvdnier powder pattern. 

The lattice parameters and cell volume of the four Scjo-xBrggZ^ phases 

follow the trend Os>R\i»Mn>Fe as predicted by Pauling's single bond radii. A 

summary of bond distances and angles for the Os, Ru, and Mn phases is listed 

in Tables 24, 25, and 26. 

Structure description 

The structure of Sc2o.xBr28Z4, as for Gd2ol28Mn4, is built of two basic units, 

the first being SC16Z4 oligomeric clusters similar to those seen in the previous 

sections. The second xmit consists of a Sc4Brg fragment, made up of a tetrahe­

dron of Sc atoms that are coordinated by Br atoms. The SC16Z4 clusters are 
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Table 23. Positional and thermal parameters for Sc,9 56(8)Br28Mn4 

Atom Type x y z u„ U22 U33 U,2 Ui3 U23 

Mn 4e 0.0900(3) x x 1.348(1) 0.01706(2) u„ U„ 0.003(1) U.2 U.2 

Sol 12i 0.1162(3) x 0.3246(3) 1.04(7) 0.015(1) Un 0.009(2) 0.003(2) 0.002(1) 

Sc2 4e -0.1429(4) x x 1.422(2) 0.01800(2) u„ u„ 0.007(2) u„ u.2 

Sc3' 4e 0.3839(4) x x 1.698(2) 0.02149(3) u„ u„ 0.002(2) U.2 

Brl 12i 0.1282(1) x 0.6017(2) 1.13(4) 0.0159(7) u„ 0.011(1) -0.0003(9) 0.0022(5) U.3 

Br2 12i 0.3650(1) x 0.1260(2) 1.47(4) 0.0174(7) U„ 0.021(1) 0.0011(8) 0.0049(7) U,3 

Br3 4e -0.3705(2) x x 1.833(1) 0.02319(1) U„ U„ -0.002(1) U,2 U,2 

' Occupancy of Sc3 was refined to 0.89(2)% 
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Table 24. Important bond distances in Sc2o.xBr28Z4 phases 

Sc2o.jBr28Ru.4 Sc2o,JBr2gIVln4 

z-z (x3) 3.029(3) 3.077(4) 2.787(9) 

Z-Scl (s3) 2.562(5) 2.537(4) 2.598(5) 

Z-Sc2 (x3) 2.675(8) 2.676(5) 2.676(5) 

Scl-Scl (x2) 3.293(8) 3.284(5) 3.223(7) 

Scl-Scl 3.64(1) 3.641(7) 3.597(8) 

Scl-Sc2 (x2) 3.512(4) 3.506(3) 3.475(4) 

Scl-Z 2.562(5) 2.537(4) 2.598(5) 

Scl-Brl (x2) 2.795(4) 2.801(3) 2.796(4) 

Scl-Brl 3.021(5) 3.024(3) 3.038(4) 

Scl-Br2 (x2) 2.762(5) 2.747(3) 2.759(4) 

Sc2-Scl (x6) 3.512(4) 3.506(3) 3.475(4) 

802-802" (x3) 4.31(2) 4.29(1) 4.42(1) 

Sc2-Z (x3) 2.675(8) 2.676(5) 2.676(6) 

8c2-Brl (x3) 2.851(6) 2.848(4) 2.804(5) 

Sc3-8c3 (x3) 3.61(2) 3.66(1) 3.59(1) 

Sc3-Br2 (x3) 2.855(9) 2.843(6) 2.836(7) 

Sc3-Br3 (x3) 2.673(7) 2.684(5) 2.695(6) 

Brl-Scl 3.021(5) 3.024(3) o,vooy,4j 

Brl-Scl (x2) 2.795(4) 2.801(3) 2.796(4) 

Brl-Sc2 2.851(6) 2.848(4) 2.804(5) 

Br2-8cl (x2) 2.762(5) 2.747(3) 2.759(4) 

Br2-Sc3 2.855(9) 2.843(6) 2.836(7) 

Br3-Sc3 (x3) 2.673(7) 2.684(5) 2.695(6) 

Brl-Brr (x2) 3.601(5) 3.616(3) 3.581(4) 

Brl-Br2" (x2) 3.699(2) 3.692(2) 3.664(3) 

®Se-Sc 3.468 3.462 3.420 

a Br-Br distances shorter than 3.70 A are listed. 
b Non-bonding Sc-Sc distances not included in cluster bond average. 
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Table 25. Important bond angles in Sc2o.JBr28Z4 phases 

Sc2o.xBr280s4 SC20-X®'̂ 28^^4 28^^4 

Z-Z-Scl 96.8(1) 96.38(9) 99.0(1) 

Z-Z-Sc2 103.9(1) 103.1(1) 107.8(2) 

Scl-Z-Scl 80.0(2) 80.7(1) 76.7(2) 

Scl-Z-Sc2 84.2(1) 84.50(7) 82.4(1) 

Scl-Z-Sc2 159.3(2) 160.5(2) 153.2(3) 

Sc2-Z-Sc2 107.5(2) 106.7(1) 111.4(1) 

Scl'̂ -Scl'"-Sc2^ 98.4(2) 98.3(1) 99.9(1) 

Scl^-Scl"-Sc2®^ 62.04(8) 62.08(6) 62.37(6) 

Scl"'-Scl"-Sc2«' 58.79(7) 58.72(5) 58.83(6) 

Scl^-Sc2^-Sc2®^ 55.9(2) 55.8(1) 55.3(1) 

Scl-Sc2-Scl 62.4(2) 62.6(1) 62.3(1) 

Scl-Sc2-Scl 117.55(9) 117.63(6) 116.51(7) 

Scl-Sc2-Scl 161.5(3) 161.8(2) 157.9(2) 

Scl-Brl-Scl 81.2(2) 81.1(1) 80.1(1) 

Scl-Brl-Sc2 76.9(2) 76.7(1) 76.7(1) 

Scl-Brl-Scl 103.4(1) 103.17(8) 104.17(9) 

Scl-Bri-Sc2 f »7<> rv^i \ X i V , V \ X J  t TO OfCt\ XfO.OV^/ 

Scl-Br2-Scl 73.2(2) 73.4(1) 71.5(1) 

Scl-Br2-Sc3 96.8(2) 96.2(1) 97.0(1) 

Sc3-Br3-Sc3 85.0(3) 86.1(2) 83.6(2) 

ax and eq refer to axial and equatorial positions around an octahedral coordina­
tion site. 
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Table 26. Angles around Sc atoms in Scjo-rBrggZ^ phases 

Sc2o.3cBr2gOs4 SC20.3cBr28RU4 Sc2o.sBr2gMn4 

Z-Scl-Brl 176.3(2) 176.9(1) 174.5(2) 

Z-Scl-Brl 101.0(1) 101.2(1) 100.6(1) 

Z-Scl-Br2 103.3(1) 102.89(9) 105.7(1) 

Brl-Scl-Brl 76.4(1) 76.63(8) 75.59(9) 

Brl-Scl-Br2 79.4(1) 79.37(8) 78.23(9) 

Brl-Scl-Brl 90.3(2) 90.61(1) 90.3(1) 

Brl-Scl-Br2 155.5(2) 155.8(1) 153.5(1) 

Brl-Scl-Br2 87.38(9) 86.99(5) 86.83(6) 

Br2-Scl-Br2 84.7(2) 85.4(1) 84.1(1) 

Z-Sc2-Z 69.0(2) 70.2(2) 62.7(3) 

Z-Sc2-Erl 1R2 1R3 157.6(3) 

Z-Sc2-Brl 96.98(7) 96.71(5) 98.52(8) 

Brl-Sc2-Brl 94.9(2) 94.3(1) 96.4(2) 

Br2-Sc3-Br2 81.4(3) 81.9(2) 81.4(2) 

Br2-Sc3-Br3 170.6(4) 171.7(3) 169.7(3) 

Br2-Sc3-Br3 91.5(4) 91.88(6) 90.86(6) 

Br3-Sc3-Br3 94.8(3) 93.8(2) 96.0(2) 
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encompassed by Br atoms in the same manner (locally) as seen in the previoxis 

phases. Geometrical changes within the ScjgZ^ cluster unit are observed as Z 

(and the electron count) is varied. 

It is interesting to consider the nonstoichiometry observed (75% occupied) 

in the Sc^ position of the Fe, Ru, and Os phases. This seems to result from an 

electronic compromise made by the cluster imit to approach the preferred 60 

cluster bonding electrons found in all related clusters. Removal of one-fourth of 

the Sc atoms in this tetrahedron reduces the nimiber of electrons available for 

cluster bonding from 64 to 61. The structure of Gd2ol28Mn4 displayed disorder 

of this same M4 site as weU as some of the coordinating halogens. The reported 

cubic structure could be modelled by twinning of a rhombohedral structure.®^ 

There is no direct evidence for a rhombohedral distortion in the Scjo-xBrggZ^ 

structures based on the refinement in a cubic system nor from an attempted 

refinement of Scgo-xBrggMn^ in space group R3m. Nevertheless, the similarity 

between the Sc and Gd phases leaves open the possibility that the correct 

symmetry is less than cubic. A slight rhombohedral distortion of the cell might 

result in ordering of the atoms within the SC4 tetrahedra. 

The primitive cubic cell of Sc2o.JBr28Z4, shown in Figure 29, contains one 

ScigZ^ oligomer, centered at the origin, and one Sc^ tetrahedron, located at the 

body center. This figure and all other pictures in this section were drawn with 

positional and anisotropic thermal parameters from Sc2o.xBr28Mn4. The Sc atoms 

in the oligomer form a tetra-capped truncated tetrahedron, which encloses a Z4 
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Figure 29. [100] view of the cubic unit ceii of Sc2o.xBr28Z4, with oiigomeric 

clusters at the corners and a SC4 tetrahedron at the body center of 

the cube. Br atoms are omitted for clarity. Sc is open; Z is quarter-

shaded. 
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tetrahedron oriented coincident with the outer tnincated tetrahedron. The 

cluster can also be described as a tetramer of distorted ScgZ octahedra, which are 

fused together through pairwise condensation of two edge-sharing octahedra. 

These "octahedra" are distorted into trigonal antiprisms composed of two sizes 

of Sc triangles. The interstitial atoms are markedly shifted out of the centers 

of the "octahedra" towards the oligomer center. Both clusters possess 43m (T^) 

symmetry, the highest symmetry observed in any of the oligomeric clusters 

found to date. The larger clusters contain two crystallographically unique Sc 

atoms, as shown in Figure 30. The Scl atoms, each of which is coordinated to 

five other Sc atoms, make up the truncated tetrahedron, while six-coordinate Sc2 

atoms cap the four pseudo-hexagonal faces. The clusters are oriented within the 

unit cell such that a three-fold axis along the body diagonal passes through the 

pseudo-hexagonal faces and Scl-Scl-Scl triangular faces of the cluster. The 

smaller SC4 tetrahedron is oriented with the four comers of the polyhedron 

pointing towards the truncated comers of four of the oKgomers. 

Bond distances between metal atoms within the compoxmds are similar 

to those observed in other reduced rare-earth metal halide compoxmds. The Sc-

Sc distances range from ~3.22 A (Pauling bond order of 0.27) to -3.66 A (Pauling 

bond order of 0.05), with the shortest values corresponding to the edges of the 

Scl-Scl-Scl triangular faces. An intermediate value (~3.50A) is observed within 

the nominally hexagonal faces (Sc2-Scl), and the largest values are found 

between pairs of apical Scl atoms as well as between Sc3 atoms in the SC4 
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Scl 

Figure 30. A ~[100] view of the SC16Z4 cluster unit, wliich possesses 43m (T^) 

symmetry. The polyhedron is made up of two crystallographically 

unique So atoms, Scl (open) and Sc2 (quarter-shaded). 
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tetrahedron. The average Sc-Sc distance in the clusters is ~3.45 A, which is 

comparable to the distances observed in Sc^IigCo of 3.39 A and 3.49 A. The Sc-Z 

distances vary from 2.537(4) A to 2.676(5) A, with the largest range observed in 

Sc2o.JBr28Ru4. The Scl-Z distances are distinctly shorter than the Sc2-Z 

distances; the interstitial atoms lie closer to the atoms in the Scl-Scl-Scl 

triangular face than to those in the Sc2-Sc2-Sc2 triangles. Generally, the Sc-Z 

distances are sUghtly smaller than the sum of Pauling's single bond metallic 

radii; this feature has been observed in other cluster phases as well. The only 

exception to this in these oligomers is in Sc2o.xBr28Mn4, where the Sc2-Mn 

distance is actually 0.05 A longer than the sum of single bond radii. 

The basic geometry of the SC16Z4 dusters lies intermediate between that 

observed for the Y16Z4 and Gdi6Mn4 clusters. As in the Gdi6Mn4 cluster, the Scl-

Scl-Scl triangular faces display markedly shorter distances (by >0.2 A) than the 

other Scl-Scl or Scl-Sc2 distances within the cluster. The Sc2-Sc2 (non-

bonding) distances are also larger relative to the average cluster Sc-Sc distance 

than the comparable values in the Y-containing clusters. In addition, the 

interstitial atoms form a much smaller tetrahedron than is found in the Y16Z4 

dusters. However, the smaller size of the Sc balances this effect, so that the 

Scl-Z-Sc2 trans angle (~160°) is more similar to those found in the Y dusters 

(~164°) than to that in the highly distorted Gdi6Mn4 (148°). 

Other variations in geometry are observed when the identity of Z is 

changed. The observed size change of the Z4 tetrahedron is not proportional to 
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that expected based on Pauling's single bond radii. Contrary to the expected 

trend of do^^g > dR„.R„ > dMn.Mn» the Ru^ tetrahedron exhibits the largest distances 

of 3.077 A, which correspond to a Pauling bond order of 0.11. The Os-Os 

distance of 3.029(3) A is next largest and corresponds to a bond order of 0.14. 

The Mn-Mn distance of 2.787(9) A is the smallest and corresponds to a bond 

order of 0.19 A. Clearly, all three of these distances are short enough to signify 

important TrZ interactions. The Sc-Sc distances within the clusters decrease 

slightly on going from the Os to Ru phases, with notably smaller Sc-Sc distances 

foimd in the Mn phase, which is consistent with that expected based on 

interstitial size considerations. The bond angles in the Os and Ru phases are 

similar to each other and, in many cases, are different from those seen in the Mn 

phase. Deviation of the Z-Z-Scl and Z-Z-Sc2 angles from 90° provides a measure 

of how far the interstitial is shifted out of the centers of the MgZ "octahedra". 

Both Sc2o.xBr280s4 and Sc2o.xBr28Ru4 display larger Z-Z-Scl angles (by -5") and 

larger Z-Z-Sc2 angles (by 2-3°) than those observed in Yj6Br2oRu4. The distortion 

in Sc2o.rBr28Mn4 is even more pronounced; the angles are 5-7° larger than 

observed in Yi6Br2oRu4. Accordingly, the other angles around the Z atoms are 

more distorted in Sc2o.jcBr28Mn4 than in Sc2o.:^r280s4, Sc2o.xBr28Ru4, or Yi6Br2oRu4. 

The halogens adopt three distinct modes of connectivity to the Sc atoms, 

corresponding to their three crystallographically different positions. The Brl 

atoms, pictured in Figure 31a, cap three Scl-Scl-Sc2 triangular faces in each 

pseudo-hexagonal face of the cluster and also bond exo to Scl atoms in the 
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Figure 31. a) The bonding mode adopted by Brl atoms, which cap three of the 

six Scl-Scl-Sc2 triangular faces on each hexagonal face of the 

cluster, b) The square network formed via Brl interconnections. 

The same square network was observed in YisBr2oRu4. 
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adjacent clusters. Each oligomer is connected in this fashion to six neighboring 

oligomers, which are related by a unit cell translation of ±a, ±b, or ±c. This 

bonding mode is nearly identical to that displayed by Brl atoms in Yi6Br2oRu4 

(compare Figures 31a and 2b), the only difference being that these connections 

occiu- in all three crystallographic directions due to the cubic symmetry, whereas 

they only occiir along 3 and B in YigBrgoRu^. Accordingly, the clusters form the 

same type of square network, pictured in Figure 31b, as seen in Yi6Br2oRu4, but 

extended in all three dimensions. The shortest Sc-Sc contacts between 

neighboring oligomers is 4.61 A between Scl atoms. The second bonding mode 

connects the oligomeric clusters to the SC4 tetrahedra, as illustrated in Figure 

32. Three Br2 atoms bridge the Scl-Scl edges in the Scl-Scl-Scl triangular 

faces while simultaneously bonding to 75% of a Sc3 atom in the SC4 tetrahedron. 

Four SC4 tetrahedra are connected to each oligomeric cluster and are arranged 

in a tetrahedral manner aroimd the cluster. Similarly, four clusters are 

connected to and arranged in a tetrahedral fashion about each SC4 unit. The 

0 

closest Sc-Sc contacts between the oligomers and the SC4 tetrahedra are 4.19 A 

between Scl and Sc3 atoms. The last halogen functionality is shown in Figure 

33, where Br3 atoms cap the four Sc3-Sc3-Sc3 triangular faces of the SC4 

tetrahedron, the two atom types together forming a distorted cube of Sc3 and 

Br3 atoms. 

Each SC16Z4 cluster is surrounded by thirty-six Br atoms, as shown in 

Figure 34, where emphasis is placed on the octahedral coordination of the Sc 
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SclC? 

Br2 

Sc3 

'vJf 

Figure 32. Illustration of the Br2 bonding mode, which bridges Scl-Scl edges 

0i the oligoiaer while bonding to a Sc3 atoni in the SC4 fragment. 

Four SC4 tetrahedra surround each oligomer in a tetrahedral 

manner. 
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Br2 

Figure 33. The Sc4Br8 fragment, composed of Sc3 tetrahedra coordinated by BrS 

atoms, which cap the four Sc3 triangular faces, and Br2 atoms, 

which bridge between the Sc tetrahedra and the oligomeric clusters. 
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•QL 

Figure 34. A SCJ6Z4 cluster with its 36 atom coordination sphere, where heavy 

bonds emphasize the octahedral environment of the Sc atoms. So 

is quarter-shaded, Br is open, Z is crossed. 



www.manaraa.com

147 

atoms. The coordination sphere of Br atoms surroimds and isolates each cluster 

in the same manner seen in the other oligomer-containing cluster phases. The 

Sc-Br bond distances aroimd the clusters range from ~2.75 A to ~3.04 A, with 

the average Sc-Br distance around the clusters of 2.831 A, 2.828 A, and 2.825A 

for the Os, Ru, and Mn phases, respectively. These values are larger than the 

simi of crystal radii for Sc^® (CN=6) and Br"^ of2.705 A, a feature typical of rare-

earth metal halide compounds. The edge-bridging Br2 atoms exhibit the shortest 

Sc-Br distances arovind tiie clusters, while the Brl atoms exo to Scl vertices, 

which are trans to the interstitial atoms, are the longest. The Sc3-Br2 distances 

around the Sc^ tetrahedra are near the average Sc-Br distance on the cluster. 

The Sc3-Br3 distances are even shorter than the simi of crystal radii; the Sc3 

atoms exhibit Sc-Br distances typical of isolated Sc*® ions. Due to the relative 

sizes of Sc and Br, the metal atoms are withdrawn from the 61^4 square planes 

on the periphery of the cluster; the Brl-Scl-Br2 trans angles are between 153° 

and 156°, which are smaller by ~5° than was observed in Y2oBr36lr4. 

The halogen and interstitial atoms together form approximately cubic-

close-packed layers, with the Sc atoms occupying pseudo-octahedral holes 

between the layers. These close-packed layers lie parallel to the (111), (111), 

(111), and (111) planes, which correspond to the foiir triangular faces of the Z4 

tetrahedron. The Sc atoms form clusters by occupying the 16 sites adjacent to 

groups of Z atoms. Other Sc atoms, in groups of four, occupy nearby octahedral 

sites formed only by Br atoms, yielding Sc4Zg fragments. A view parallel to these 
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close-packed layers containing one cluster and the siirroiinding SC4 fragments 

along with all the coordinating Br atoms is pictured in Figure 35. As was seen 

in the clusters, the Z atoms are slightly displaced from the close-packed 

layers toward each other, while the Sc atoms in the cluster are more noticably 

shifted towards the cluster center. The Sc atoms that make up the SC4 

tetrahedra do not appear to be shifted, but instead lie halftvay between the close-

packed layers. The shortest observed Br-Br contacts of 3.601(5) A occur both 

within and between Brl atoms in adjacent close-packed layers. 

Magnetic susceptibiiitv measurement 

All of the MigZ^ clusters foimd in the Y and Gd systems have 60 electrons 

available for metal-metal bonding. This electron count corresponds to a closed-

shell orbital configuration for both YigBrjoRu/^ and Gd2ol28Mn4,®® based on 

extended Hiickel calculations. The discovery of the Sc2o.xBr28Z4 phases, in which 

the electron count deviates from the "optimal" 60 electrons, suggests that the 

orbital configuration has changed in some way, for either structural reasons, 

electronic reasons (eg. relative electronegativity), or both. Based on the single 

crystal results, the electron count for Sci^r28Z4 Z = Os, Ru is 61 electrons. If 

this extra impaired electron is localized on the cluster, the material should 

exhibit temperature-dependent paramagnetic behavior. To test this, magnetic 

susceptibility measurements were performed on powdered samples of 

ScigBr280s4, Sci9Br28Ru4, and Sc2o.xBr28Fe4 judged single phase based on Guinier 

powder patterns. The data for Sci9Br280s4, measured at both 0.1 and 3 Tesla 
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Figure 35. A SC16Z4 cluster and neighboring Sc4 fragments along with 

coordinating Br atoms viewed parallel to the pseudo-close-packed 

layers. Sc is quarter-shaded; Br is open; Ru is crossed. 
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and presented in Figure 36, exhibits Curie-Weiss behavior above 100 K, 

presumably combined with van Vleck temperature-independent paramagnetism 

(TIP). At ~60 K, the sample undergoes what appears to be antiferromagnetic 

ordering, followed by a second transition at ~20 K. Analysis of the data 

(measixred at 3 Tesla) for T > 100 K with a nonlinear least sqxiares program 

provided a TIP term of 0.0008(2) emxa/mol along with a Pef!=2.0(l)jaB> which is 

similar to the expected value of 1.7311b for one unpaired, spin-only, localized 

electron. Similar behavior, as shown in Figure 37, was observed at 0.1 and 3 

Tesla for ScigBr28liu4, which, along with van Vleck TIP, displays Ctarie-Weiss 

behavior for T > ~130 K with deviation at lower temperatxares. Again, a weak 

antiferromagnetic ordering seems to occur at ~60K Analysis of the data 

(measured at 3 Tesla) for T > 130 K yielded a iaefr= 2.1(1)pb and a TIP 

contribution of 0.0043(2) emu/mol. The increase in the magnitude of the molar 

susceptibility at lower field strength suggests that a small amotmt of a 

ferromagnetic impurity is present in the sample. The data for Sc2o.JBr28Fe4 at 

3 Tesla are presented in Figure 38. The data follows Curie-Weiss behavior for 

T > 100 K, and again deviates at lower temperatures, and also displays a van 

Vleck TIP contribution. Data analysis indicated )iefl=2.0(4))aB» with a TIP term 

of 0.0077(5) emu/moi. The transition at ~60 K corresponds to a much weaker 

interaction in this Fe analogue than was displayed in the Os phase, but an 

inflection point in the susceptibility vs. T curve is still observed. 
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Figure 36. A plot, of the magnetic susceptibility of Sc2o.xBr280s4 as a function of temperature at field strengths 

of 0.1 and 3 Tesla. The compound is paramagnetic with iLien=2.0(l)|JB. 
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Figure 37. A plot of the magnetic susceptibility of Sc2o.xBr28Ru4 as a ftmction of temperature at field strengths 

of 0.1 and 3 Tesla. The compound is paramagnetic with Pgn=2.1(l)pB 
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Figure 38. A plot of the magnetic susceptibility of Sc2o.xBr28Fe4 as a function of temperature at field strengths 

of 3 Tesla. The compound is paramagnetic with iiefj=2.0(4)|aB. 
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These resxilts indicate that the three phases are paramagnetic and contain 

one impaired, localized electron, whose signal is combined with a van Vleck 

temperature-independent paramagnetic term, as observed in other oligomeric 

phases and some transiton metal cluster phases.®"-®^ Additionally, the phases, 

particularly Sc2o.3(Br280s4, undergo a transition at low temperatiires, which 

causes a change in the compoxmd's magnetic properties. The data, while 

behaving similar to that predicted by the Curie-Weiss law at high temperatures, 

deviates firom Curie-Weiss at temperatxires less than 100 K. 

Resmts of the measurement of the hysteresis curves of Sc2o.JBr280s4 at 50 

K and Scgo-xBrggRu^ at 60 K as a function of applied field are given in Figures 39 

and 40. The Os phase exhibits a linear relationship between magnetization and 

field, as expected of a paramagnetic phase, and no significant hysteresis. The 

Ru phase shows almost no hysteresis, but a plot of magnetization vs. field 

displays a small S-shape near low field strengths; this coxild be caused by the 

presence of a ferromagnetic impurity in the paramagnetic sample. 

PrgBrjgNgO 

The presence of adventitious impurities such as C and N was an 

important factor in the early syntheses of reduced rare-earth metal halides. 

Without the stabilization provided by interstitial atoms, cluster phases generally 

do not form. Of course, now interstitials are added by design, in attempts to 

form new phases as well as to electronically modify known phases. However, the 
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Figure 39. Plot of the magnetization of Sc2o.xBr280s4 as a ftmction of field strength at 50 K. The data exhibit 

a linear relationship, characteristic of paramagnetic material. 
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Figure 40. Plot of the magnetization of Sc2o.xBr28Ru4 as a function of field strength at 60 K. 
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discovery of this new structure type proves that the phenomenon of the 

"adventitious" interstitial can still provide new and unexpected materials. 

Synthesis 

The title compoimd was obtained from a reaction loaded as PrgBrgMng and 

heated at 950°C for 20 days then slow cooled. The product consisted of PrjBrg, 

PrOBr, plus a source of unidentified lines, and it also contained a small number 

of block-shaped black crystals. A few black crystals of the same phase with 

identical cell parameters were also obtained from a reaction loaded as PrgBrgFe 

and heated similarly, implying that the phase did not contain Mn or Fe. A 

single crystal X-ray diffraction study showed that the compound crystallized in 

a new structure type and had the formxila Pr8Bri3Z4; Z was a light element that 

refined best as N. The powder pattern calculated from this structure model did 

not match any lines in the observed powder patterns of these two reactions. The 

likely sources for adventitious impurities included N from the dry box atmo­

sphere and 0 from slight hydrolysis of the reagents (PrBrg) or other impurities 

from the Mn, Fe, or Pr metal. A 3:1 ratio of N:0 would result in the valence 

compound PrgBrigNgO. A combination of C and O could also provide a valence 

compotmd. 

To determine the identity of the light interstitial element, a series of 

reactions incorporating C, N, and O was loaded. Starting materials were PrBrg, 

Pr, PrgOji, PrN, and amorphous C. Reactions loaded as Pr8Bri3Z4 with only 0, 

only C, or as O and C (2.5:1.5 ratio) as interstitials and heated at 950°C for 20 



www.manaraa.com

158 

days did not yield this new phase. Reactions loaded with PrBrg and PrN in 

ratios of 1:0.9 (Pr8 4Bri3jN4) and 1:1 (Pr, 6Brio.9N4) and heated similarly resiilted 

in black crystals and chmiks as a product, which ground to a light gray powder. 

The material from both of these reactions included a small amount (10-15%) of 

PrN and traces (<10% each) of PrOBr and Pr8Bri3Z4, with an unidentified major 

phase. A third reaction loaded with the PrBr3:PrN ratio of 1:0.7 (Pr8BriiN3j) and 

heated at 950°C for 20 days resulted in ~ 30% yield of Pr8Brj3Z4 along with 

~10% PrOBr and a majority of the unknown phase seen in the previous 

reactions. The yield of Pr8Bri3Z4 increased as the ratio of PrBr3;PrN increased. 

The amount of PrOBr also showed this trend, suggesting that the PrBr3 was not 

0-free; slight hydrolysis occxirs within a few months even when stored in the dry 

box. As no more PrN was readily available, two of these reactions were ground 

and reloaded with either C or PrgOn added, to give the loaded compositions of 

Pr8Bri3N30 and Pr8Brj3N3C and heated at 950° for 20 days. Based on Guinier 

powder pattern resvJts, both of these reactions produced PrgBri3Z4, the former 

reaction in a high yield (~75%) while the latter resulted in smaller amounts 

(~30%) of the phase. Previous experience in reloading reaction products of rare-

earth metal halides has shown that a significant increase in the 0-containing 

phases (typically MOBr) is observed in the final product. Thus, the lesser 

amoimt of Pr8Bri3Z4 foimd in the reaction loaded with a mixture of C and N 

could have resulted from O contamination of the sample. A reaction loaded with 

a mixture of N (as PrN) and C in a 1:3 ratio yielded a small amoimt (-10%) of 
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the phase as well, again presiamably stabilized by a small amoimt of O impurity. 

The high yield of Pr8Bri3Z4 in the reaction loaded as PrgBrigNgO strongly 

suggests that this is the identity of the phase. Further synthetic attempts with 

freshly sublimed PrBrg, PrN, and Pr should be carried out to clarify this. 

Attempts at incorporation of the main-group element B into Pr-Br cluster 

phases at 850° C resulted in the formation of PrgBrgB, which is isostructural 

with cubic PrgBrgZ (Z = Co, Os, Rh, Ir, Pt).^^ Based on 18 Guinier powder 

pattern lines, the lattice parameter of the cubic cell is a=11.6333(8) A. 

Structure determination 

The shiny black crystal used for the single crystal study of PrgBrigNgO was 

obtained from a reaction loaded as PrjBrgMng and heated at SSO'C for 20 days 

before slow cooling. Data collection was performed at room temperature on a 

Rigaku AFC6R automated dififractometer using Mo Ka radiation. A random 

search located 18 reflections with an average intensity of 7,600 counts which 

indexed to a tridinic cell by the diffiractometer software, a=11.737(5), 

b=15.508(8), c=8.347(3), a=105.60(4), j3=110.82(3), y=93.71(4), that was confirmed 

by axial photos. A hemisphere (h,±k,±l) of data was collected between the 26 

limits of 2 and 50°; the other hemisphere (-h,±k,±l) was collected between the 20 

limits of 2 and 46°. After data collection, three psi scans were measured, which 

exhibited a transmission range of 0.301 to 1.000. Important data collection and 

refinement parameters are listed in Table 27. 
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Table 27. Crystallographic data for PrgBrigNgO 

Crystal data 

Formula 

Space group, Z C2/c, 8 

a(Af 21.967(8) 

b(A) 8.355(2) 

c(A) 16.889(7) 

P (deg.) 119.40(3) 

V(A^) 2701(3) 

(g/cm®) 5.465 

)i (Mo Ka, cm"^) 331.67 

Data collection 

Crystal dimensions, mm 0.19 X 0.17 X 0.14 

DijGfractometer Rigaku AFC6R 

Eadiation, wavelength (A) Mo Ka, 0.71069 

Scan mode CO 

Octant measured, 2G^ -h,±k,±l to 50°, h,±k,±l to 46° 

Hsfineivjzpjt 

No. of measured reflections 8339 

No. of independent reflections 2829 

No. of indep. reflections (I>3ai) 1794 

No. of variables 105 

Transmission coeflBcient range 0.831-1.097 

Secondary extinction coefi&cient 7.4(4) X 10"  ̂

(I>0) 0.070 

R, 0.0290, 0.0310 

Largest residual peak, e/A  ̂ 1.65 (0.96 A from Br5), -1.65 

® Giiimer cell constants from 22 lines. 
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Structure solution began with data reduction, which included Lorentz-

polarization corrections and an empirical absorption correction based on an 

averaged transmission curve. Intensity statistics strongly indicated a centro-

symmetric space group. Data averaging in PI resulted in an of 5% for all 

data. Direct methods (SHELXS-86) provided a reasonable solution containing 

four Pr atoms and 13 Br atoms; after the addition of fovir light atoms located in 

a difference Fourier map, the model refined isotropically to R=6.1%, R^=6.3%. 

ORTEP drawings of the compoimd seemed to indicate the presence of higher 

symmetry. When the atomic positions were tested for the presence of higher 

symmetry, a glide plane was detected which related the atoms; the true 

symmetry of the cell was C-centered monoclinic with a=21.96 A, b=8.35 A, 
o 

c=16.89 A, and P=119.4°. After transforming the data to this higher symmetry 

cell, the equivalent starting model was again obtained with the direct methods 

procedure of SHELXS-86, and the refinement proceded tmeventfuUy. Isotropic 

refinement of aU atoms plus the secondary extinction coefficient resulted in a 

value of R=0.055 and R„=0.060. Anisotropic refinement of the Pr and Br lowered 

the R to 0.0324 and R„ to 0.0341; the thermal parameters were generally well-

behaved, but two Br atoms had aspect ratios near four. Application of a 

DIFABS absorption correction gave a final R of0.0291 and R„ of 0.0310, but only 

changed the anisotropic thermal parameters slightly. The light atoms were 

refined isotropically as N and had very similar thermal parameters; there was 

no indication of the presence of ordered 0, but X-ray techniques are relatively 
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insensitive to such small differences in electron density. The largest positive 

and negative peaks in the final difference Fourier calculation were 1.65 e/A®, 

located 0.96 A from Br5, and -1.65 e/A^. The calculated structure factors of all 

reflections agreed with those calculated from the model to within less than 5ap. 

Positional and anisotropic thermal parameters are listed in Tables 28 and 29. 

The powder pattern calculated from the structure model agrees very well 

with that observed for the product of a reaction loaded as PrgBrigNgO. Lattice 

parameters were calcvilated with the lATT program based on the positions of 22 

Guinier powder pattern lines. 

Structure description 

The structure of PrgBrigNgO may be described as being built of condensed 

Prg octahedral chains which have been distorted to Pr4 tetrahedra sharing 

opposite edges, forming isolated Pr^^ infinite chains. Each tetrahedron is 

centered by either N or 0, while the Br atoms sheath as well as interconnect the 

chains. The imit cell projection along B in Figure 41 reveals that the separated 

chains stack along B and extend infinitely within the a-b plane at heights of z=0, 

1/2, and 1. These chains do not parallel a, but instead run along the face 

diagonals of the unit cell. The chains within the a-b plane at z=0, pictured in 

Figure 42a, extend along the [110] direction. The chains at a height of z=l/2, 

shown in Figure 42b, run along [110] and are related to those at z=0 and 1 by 

a c-glide perpendicular to B. 
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Table 28. Positional and equivalent isotropic thermal parameters for 
PrgBrigNgO 

Atom Type X y z Be, 

Prl 8f 0.36848(3) 0.42542(8) 0.05601(5) 0.72(2) 

Pr2 8f 0.07310(3) 0.32246(8) 0.43956(5) 0.85(2) 

Pr3 8f 0.43593(3) 0.46492(8) 0.38449(5) 0.82(2) 

Pr4 8f 0.22955(3) 0.27525(8) 0.38641(5) 0.78(2) 

Brl 8f 0.20065(6) 0.0970(2) 0.13995(9) 1.23(5) 

Br2 8f 0.31381(6) 0.4386(2) 0.18406(9) 1.04(4) 

BrS 8f 0.34922(6) 0.1512(2) 0.36200(9) 1.08(4) 

Br4 8f 0.46523(6) 0.1726(2) 0.0283(1) 1.64(5) 

Br5 8f 0.32270(7) 0.0759(2) 0.0620(1) 2.06(5) 

Br6 8f 0.07420(7) 0.3005(2) 0.2273(1) 2.30(5) 

Br7 4e 0 0.8686(3) 1/4 1.80(7) 

N1 8f 0.0472(4) 0.067(1) 0.4641(7) 0.7(2) 

N2 8f 0.1767(5) 0.187(1) 0.4696(7) 0.7(2) 
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Table 29. Anisotropic thermal parameters for PrgBrigNgO 

Atom u„ U22 U33 U,2 U:3 U23 

Prl 0.0118(3) 0.0089(4) 0.0080(4) -0.0007(3) 0.0059(3) 0.0003(3) 

Pr2 0.0113(3) 0.0075(4) 0.0127(4) 0.0008(3) 0.0054(3) 0.0009(3) 

Pr3 0.0079(3) 0.0140(4) 0.0076(4) -0.0011(3) 0.0027(3) -0.0006(3) 

Pr4 0.0103(3) 0.0126(4) 0.0070(4) -0.0004(3) 0.0043(3) -0.0001(3) 

Brl 0.0150(6) 0.0221(7) 0.0099(7) -0.0058(5) 0.0062(5) -0.0026(6) 

Br2 0.0157(6) 0.0160(6) 0.0099(7) 0.0000(5) 0.0081(5) 0.0009(5) 

BrS 0.0130(6) 0.0166(7) 0.0105(7) -0.0009(5) 0.0049(5) -0.0028(5) 

Br4 0.0187(6) 0.0135(7) 0.036(1) -0.0027(5) 0.0176(6) -0.0043(6) 

Br5 0.0343(7) 0.0126(7) 0.048(1) -0.0025(6) 0.0326(7) -0.0005(7) 

Br6 0.0169(6) 0.0287(8) 0.026(1) 0.0021(6) -0.0013(6) 0.0027(7) 

Br7 0.0152(9) 0.040(1) 0.012(1) 0 0.0057(8) 0 

N1 0.009(2) 

N2 AnQ/'o^ 
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Figure 41. Unit cell projection along [010] illustrating the chains of edge-

sharing Pr4/2 tetrahedra that extend infinitely in the a-b plane at 

z=0, 1/2, and 1. 5 is horizontal, a is -vertical. 



www.manaraa.com

166 

d\ 
r; 

\ 

Figure 42. [001] view of the infinite chains within the a-b planes located at a) 

at z=0, where the chains extend along the [110] direction and b) at 

z=l/2 with the chains running along the [110] direction, g is 

horizontal, S is vertical. 
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The chains of edge-sharing tetrahedra are composed of four crystallo-

graphically distinct Pr atoms and two unique light atom sites, as depicted in 

Figure 43a. This view clearly shows two types of octahedra, which are elongated 

so much that a trans bond forms. The first such type of octahedron is composed 

of Prl, Pr2 and Pr4 atoms enclosing two N2 atoms, and the second is formed by 

Prl, Pr2 and Pr3 atoms containing two N1 atoms. These octahedra, each of 

which degenerate into two tetrahedra, share Prl-Pr2 edges forming an infinite 

zigzag chain. The interstitial atoms which are enclosed within one octahedron 

are related by an inversion center, located in the middle of each of these 

"octahedra". The Pr-Pr distances, listed along with other important bond 

distances and angles in Tables 30 and 31, range fi-om 3.510(2) A to 4.023(1)A. 

The shared edges (Prl-Pr2, Pr3-Pr3, Pr4-Pr4) of the tetrahedra are very short, 

with an average length of 3.53 A. This distance is even shorter than that 

observed in Pr metal (3.64 A yet the presence of metal-metal bonding is 

unlikely; powdering a shiny "black" crystal of PrgBrjgNgO resulted in a nearly 

white material, indicating that the material should be a valence compound 

dominated by Pr-(N,0) and Pr-Br interactions. The Pr-(N,0) distances range 

from 2.299(9) A to 2.41(1) A with an average of 2.34 A for both N1 and N2 

atoms. This average value is very close to the sxmi of crystal radii,®* 2.35 A, for 

N'®, and Pr^®, and is comparable to the M-Z distances observed in both a-

GdgClgN®® (~2.27 A) and Sm40Cl6®° (~2.37 A) when the appropriate size 

differences of the metals are considered. The environments of the N1 and N2 
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Table 30. Important bond distances in PrgBrigNgO 

Prl - Pr2* 3.544(1) Pr2 - Prl* 3.544(1) PrS - Prl 3.955(2) 

- PrS 3.955(2) - PrS 4.015(1) - Prl 3.917(2) 

- Pr3 3.917(2) - Pr3 3.901(2) - Pr2 4.015(1) 

- Pr4 4.023(1) - Pr4 3.975(2) - Pr2 3.901(2) 

- Pr4 3.898(2) - Pr4 3.948(2) - PrS" 3.565(2) 

Pr4 - Prl 4.023(1) N1 - Prl 2.359(9) N2 - Prl 2.35(1) 

- Prl 3.898(2) - Pr2 2.30(1) - Pr2 2.361(9) 

- Pr2 3.975(2) - PrS 2.299(9) - Pr4 2.34(1) 

- Pr2 3.948(2) - PrS 2.41(1) - Pr4 2.31(1) 

- Pr4* 3.510(2) 

Prl - Brl 2.891(2) Pr2 - Br3 2.929(2) Pr3 - Brl 3.029(2) 

- Br2 2.946(2) - Br4 3.164(2) - Br2 3.129(2) 

- Br4 3.190(2) - Br4 3.369(2) - BrS 3.152(2) 

- Br5 3.107(2) - Br5 3.127(2) - Br4 3.116(2) 

- Br7 3.164(2) - Br6 3.081(2) - Br6 3.326(2) 

- N1 2.359(9) - N1 2.30(1) - Br7 3.306(1) 

- N2 2.35(1) - N2 2.361(9) - N1 2.299(9) 

Pr4 - Brl 3.232(2) Brl - Prl 2.891(2) - N1 2.41(1) 

- Br2 3.020(2) - PrS 3.029(2) Br3 - Pr2 2.929(2) 

- Br3 3.036(2) - Pr4 3.232(2) - PrS 3.152(2) 

- Br5 3.061(2) Br2 - Frl 2.946(2) - ?r4 3.036(2) 

- Br6 3.148(2) - Pr2 3.129(2) Br4 - Prl 3.190(2) 

- N2 2.34(1) - Pr4 3.020(2) - Pr2 3.164(2) 

- N2 2.31(1) - PrS 3.116(2) 

Br5 - Prl 3.107(2) Br6 - Pr2 3.081(2) Br7 - Prl (x2) 3.164(2) 

- Pr2 3.127(2) - PrS 3.326(2) - Pr3(x2) 3.306(1) 

- Pr4 3.061(2) - Pr4 3.148(2) 

N1 - N1 3.08(2) Brl - Br2^ 3.615(2) Br2 - BrS 3.621(2) 

- N2 2.97(1) Brl - Br2 3.408(2) BrS - Br4 3.559(2) 

N2 - N2 3.05(2) Brl - Br3 3.592(3) Br4 - Br4 3.606(3) 

Brl - Br5 3.524(2) Br4 - BrS 3.540(2) 

a Length of shared tetrahedral edge. 
b Only Br-Br distances ^3.70 A, sum of van der Waals radii, are listed. 
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Table 31. Selected bond angles in PrgBrigNgO 

Pr2-Prl-Pr3 62.40(2) Prl-Pr3-Pr2 102.26(3) Prl-Br4-Pr3 76.79(4) 

Pr2-Prl-Pr3 64.88(2) Prl-Pr3-Pr3 63.62(4) Pr2-Br4-Pr3 145.68(6) 

Pr2-Prl-Pr4 63.01(3) Pr2-Pr3-Pr2 126.49(3) Prl-Br5-Pr2 112.72(5) 

Pr3-Prl-Pr3 63.88(3) Pr2-Pr3-Pr3 61.61(3) Prl-Br5-Pr4 162.43(6) 

Pr3-Prl-Pr4 53.85(4) Pr2-Pr3-Pr3 64.88(3) Pr2-Br5-Pr4 79.93(4) 

Pr3-Prl-PT4 75.69(3) PTl-Pr4-Prl 127.41(3) Pr2-BT6-Pr3 77.50(4) 

Pr3-Prl-Pr4 116.50(3) Prl-Pr4-Pr2 52.61(2) Pr2-Br6-Pr4 175.22(7) 

Pr3-Prl-Pr4 121.79(3) Prl-Pr4-Pr2 101.09(3) Pr3-Br6-Pr3 99.82(5) 

Pr3-Prl-Pr4 119.94(3) Prl-Pr4-Pr4 61.88(3) Prl-Br7-Prl 162.73(8) 

Pr4-Prl-Pr4 52.59(3) Prl-Pr4-PT2 102.84(3) Prl-Br7-Pr3 (x2) 101.22(4) 

Prl-Pr2-Pr3 63.97(3) Prl-Pr4-Pr2 53.71(3) Prl-Br7-Pr3 (x2) 74.47(4) 

Prl-Pr2-Pr3 62.05(3) Prl-Pr4-Pr4 65.54(4) Pr3-Br7-Pr3 151.81(8) 

Prl-Pr2-Pr4 64.38(2) Pr2-Pr4-Pr2 127.41(3) Prl-Nl-Pr2 99.1(4) 

Prl-Pr2-Pr4 62.41(2) Pr2-Pr4-Pr4 63.31(4) Prl-Nl-Pr3 114.4(4) 

Pr3-Pr2-Pr3 53.51(3) Pr2-Pr4-Pr4 64.09(4) Prl-Nl-Pr3 112.0(4) 

Pr3-Pr2-Pr4 10A ^ VO/ Prl-Brl-PrS QQ Q:rUK\ •D-1 .Ml .tJ-'O 121.7(4) 

Pr3-Pr2-Pr4 116.33(3) Prl-Brl-Pr4 78.85(4) Prl-Nl-Pr3 111.8(4) 

Pr3-Pr2-Pr4 118.94(3) Pr3-Brl-Pr4 100.58(4) Prl-Nl-Pr3 98.3(4) 

Pr3-Pr2-Pr4 75.73(3) Prl-Br2-Pr3 110.78(5) Prl-N2-Pr2 97.5(3) 

Pr4-Pr2-Pr4 52.59(3) Prl-Br2-Pr4 84.77(4) Prl-N2-Pr4 118.1(4) 

Prl-Pr3-Prl 126.15(4) Pr3-BT2-Pr4 107.34(4) Prl-N2-Pr4 113.3(4) 

Prl-Pr3-Pr2 99.58(3) Pr2-Br3-Pr3 79.71(4) Prl-N2-Pr4 115.5(4) 

Prl-Pr3-Pr2 53.63(3) Pr2-Br3-Pr4 82.87(5) Prl-N2-Pr4 98.1(3) 

Prl-Pr3-Pr3 62.52(4) Pr3-Br3-Pr4 102.24(4) 

Prl-Pr3-Pr2 53.07(2) Prl-Br4-Pr2 109.54(5) 
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Figure 43. a) Illustration of the zigzag chains of edge-sharing "octahedra" that 

distort to form Pr tetrahedra, which are centered by (N,0). b) The 

halogen coordination around the chain composed of Br atoms 

bridging edges of Pr^ tetrahedra and occupying sites exo to each Pr 

vertex. 
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sites are very similar, the only difference being a slightly wider range of 

observed Pr-N distances and Pr-N-Pr angles for N1 compared to N2. This may 

indicate that the N1 site is occupied by both O and N, resvilting in a more 

geometry, but the results are not conclusive. 

The zigzag chains of tetrahedra are surroimded by seven crystallographic-

ally unique Br atoms, which bridge the four open edges of each tetrahedron and 

occupy sites exo to the four Pr atoms, as shown in Figure 43b in a view slightly 

rotated from that in Figure 43a. The halogens exhibit four basic functionalities: 

Bi^ ' to one chain, Br ® and Br°'' between chains in the same orientation (and 

height along S), Bf ' to two chains, and Br^"° and Br° ' between chains in different 

orientations (and different heights along 5). The first functionality is shown in 

Figure 43b, where three-bonded Brl and Br3 atoms simultaneoiisly bridge two 

edges, the Prl-Pr3 and Prl-Pr4 edges and the Pr2-Pr3 and Pr2-Pr4 edges, 

respectively. The Pr-Br-Pr angles to the edge-bridged atoms are near 80°, while 

the third angle is 100° or greater. Also, one of the three Pr-Br bond distances 

is much longer (by at least 0.12 A) than the other two. The second halogen 

functionality, illustrated in Figure 44, interconnects the Pr4/2 chains within the 

a-b plane at z=0 and 1/2. The Br4 atoms bridge the Prl-Pr3 edge while bonding 

exo to a Pr2 vertex in the neighboring chain. Meanwhile, Br5 atoms bridge the 

Pr2-Pr4 edge and bond exo to the Prl vertex in the adjacent chain. The third 

and fovirth halogen functionalities are shown in Figure 45, which portrays Br 

interconnections between a chain at z=0 and one 
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Figure 44. [001] view of the Br atoms intercomiecting chains in tlie same orientations (within the a-b 

plane). Br4 and Br5 atoms bridge one edge of a tetrahedron while bonding exo to a Pr vertex 

in the adjacent chain. 3 is horizontal, 2 is vertical. 
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Figure 45. Repre.'sentation of the halogen interconnections between a chain at z=0 and one at 2=1/2. Br2 

and B]r6 atoms bridge edges and also bond exo to Pr in the neighboring chain, while Br7 bonds 

inner to both chains. 2 is vertical. 
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at z=l/2 in the center of the pictiire. The Br2 atoms are bridging the Prl-Pr4 

edges while bonding exo to a Pr3 vertex in the adjacent chain. Similarly, Br6 

atoms bridge the Pr2-Pr3 edge of one tetrahedra while bonding exo to a Pr4 

vertex in the tetrahedral chain below or above the first (along §). The Pr-Br^ '-Pr 

angles (for edge-bridging Br atoms) fall between 74° to 85°, where the most acute 

value is exhibited by Br7 atoms. The Pr-Br bond distances do not show a 

regular trend based on Br functionalities. 

The coordination environments of the trivalent Pr atoms are rather 

irregular. The Prl, Pr2, and Pr4 atoms are coordinated by a total of seven Br 

and (N,0) atoms forming a monocapped trigonal prism, illustrated for Prl in 

Figure 46a. Pr3 is siurounded by a total of eight Br and (N,0) atoms that 

constitute a bi-capped trigonal prism, as seen in Figure 46b. Both of these 

geometries are observed in the binary PrgBrg, which has been formulated as 

(Pr*^)2(Br )5(e'). The Pr-Br bond distances range fi:om 2.891(2) A to 3.326(2) A, 

with at least one longer than normal bond (>3.19 A) to every Pr atom. Several 

Br atoms display unusually close halogen contacts; the shortest Br-Br distance 

is 3.408(2), 0.3 A shorter than expected van der Waals distances. 

The compoamd PrgBrigNgO is very similar to a-GdjClgN, both structurally 

and (presumably) electronically. a-GdjClgN also consists of edge-sharing M^Z 

tetrahedra forming isolated infinite chains, as pictured in Figure 47. The 

coordination sphere of the Gd atoms in this phase were also characterized by 

some unusually long M-X distances. As in PrgBrjaNgO, this Gd compound 
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Figure 46. The coordination environments arotind a)Prl atoms, which center 

a monocapped trigonal prism of Br and (N,0) atoms, and b) Pr3 

atoms, centering a bicapped trigonal prism. 
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Figure 47. The structure of GdgClgN, composed of edge-sharing tetrahedra 

similar to those found in PrgBrigNgO. 
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features very short M-M distances, although no M-M bonding is present; the 

dominant interactions are between Gd and N or CI atoms. In fact, PrgBrigNgO 

is nearly a sesquibromide, PrgBrg 25(N,0), where the addition of an extra Br atom 

electronically balances the mixed interstitial composition and resxalts in a more 

distorted salt-like compound. Notably, many M^OClg phases are known that 

contain 0 atoms centering similar rare-earth metal tetrahedra. Thus, this new 

Pr phase contains features common to both trivalent Gd (GdgClgN) and divalent 

Eu, Yb and Sm (M4OCI6) compounds. 

General Observations 

Exploratory sjmthesis in the Y—Br—Z and Sc—Br—Z systems has led to the 

discovery of several new reduced rare-earth metal bromides which are stabilized 

by interstitial atoms (Z). The majority of these phases incorporate the relatively 

new M16Z4 cluster unit (M=rare-earth metal, Z=transition metal interstitial), now 

firmly established as an important biailding-block in rare-earth metal halide 

structural chemistry. This cluster \mit has been observed in four different 

structure types, two of which are bmlt of only MjgZ^ clusters coordinated by 

halogens (Yi6Br2oRu4, Yi6Br24lr4), and two that include other structiiral fi-agments 

in addition to M16Z4 cltisters and coordinating halogens (Y2oBr36lr4, Sc2o.j,Br28Z4). 

These four structure types display many characteristic structviral features 

and dimensional relationships. Each phase is based on approximately cubic-

dose-packed layers of Br and interstitial atoms (Z), with the rare-earth metals 

occupying pseudo-octahedral holes around groups of Z atoms to form the 
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clusters. In each structure, the clusters are surrounded in a nearly identical 

fashion by 36 coordinating halogens. The manner in which these halogens are 

shared between clusters changes for each structure type depends on the identity 

of Z and the 6r:M ratio; as this ratio increases, the sharing of Br atoms 

decreases, resialting in the presence of more basic Br atoms within the phases. 

Because of the similar geometries and Br coordination aroxmd the clusters, 

Yi6Br2oRu4 and the Sc2o.xBr28Z4 phases exhibit similar square networks of clusters 

linked via Br atoms. Rotating the clusters and coordinating Br atoms in these 

square networks by ~28° generates a second type of square network, found in 

YgoBrgglr^, where a new style of intercluster linkage via Br atoms is observed. 

The fourth structure type, displayed by Yi6Br24lr4, contains pseudo-close-packed 

layers of cliisters, which can be generated from the first square network by 

shifting alternate rows of cluster by half of a imit cell length. Efficient packing 

of the clusters within the halogen network is a major factor in determining the 

structural arrangement. 

The geometry of the M16Z4 clusters varies in a characteristic fashion, with 

the clusters tmdergoing a series of distortions as illustrated in Figure 48. The 

distortion involves the contraction of the Ml-Ml-Ml triangular faces which 

correspond to truncation of the rare-earth metal tetra-capped tetrahedron. 

Along with this contraction, a reduction in the size of the Z4 tetrahedron occurs, 

in concert with an increase in the distance between the M2 atoms that cap the 

pseudo-hexagonal faces of the truncated tetrahedron. Table 32 lists ratios of the 
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Ml 

/ 

Ml 

Figure 48. Illustration of the distortions exhibited by M16Z4 clusters. Ml 

triangialar faces contract, while the Z4 tetrahedron shrinks in 

concert with the movement of M2 away from the cluster center. 
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Table 32. Distance ratios, angles and bond orders helpful in understanding the distortions in 

M16Z4 clusters. 

^MlA^'^clus Bond Order 

(Z-Z) 

M1-Z-M2 

Angle 

0.842 1.125 0.967 1.433 0.02 169.57(5) 

0.813 1.113 0.976 1.348 0.04 165.52(9) 

Y2oBr36lr4 0.814 1.133 0.983 1.326 0.04 164.3(2) 

Yi6Br24lr4 0.806 1.124 0.976 1.310 0.05 163.9(2) 

Sc2o.xBr28Ru4 0.766 1.141 0.949 1.235 0.11 160.5(2) 

S^20-x®''28^®4 0.764 1.144 0.950 1.202 0.14 159.3(2) 

SC20.xBr28Mn4 0.729 1.120 0.942 1.183 0.19 153.2(3) 

0.730 1.103 0.952 1.200 0.16 148.3(2) 

® from reference 62 
^ from reference 63 
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average distance in the Ml-Ml-Ml triangular faces to the average M2-M2 

distance, to Pauling's single bond distance, and to the average M-M distance 

within the cluster. Also included are the ratios of the observed Z-Z distance to 

Z-Z single bond distance, the Z-Z bond order, and the trans M1-Z-M2 angle 

across MgZ "octahedra". The gradual displacement of the Z atoms toward the 

cluster center strongly influences the trans M1-Z-M2 angles; the resulting 

interactions between Z and M2 atoms drive the M2 atoms farther away from the 

cluster center, giving a more acute trans angle. A comparison of the d(Mi-

Mi):d(M2-M2) ratios shows a distinction between the Y clusters and the 

remaining clusters. The Y cluster framework values are fairly consistent 

regardless of the structure type, and only minimal Z-Z interaction is indicated. 

The Sc and Gd clusters, which are isostructural, show evidence of stronger Z-Z 

interactions, particularly with Mn as an interstitial. 

The interesting new structxares presented in this work are evidence of the 

subtle effect that slight differences in halogen size can have on determining 

structural stability. While the first examples of clusters were seen in 

iodides, the oligomeric xmit appears to be more prolific with the smaller Br 

ligand. Similarly, the structure of PrgBrigNgO incorporates one extra Br atom 

compared to the related chloride phases. The larger size of the halogen may 

allow for better coordination of the Pr4^ chains. 

The electron count also has a large effect on the manner of halogen 

sharing; in all four M15Z4 structure types, the clusters maintain close to 60 
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electrons through a variety of structural modifications. The Y and Gd clusters 

achieve this exact count, while the Sc phases accommodate up to 61 electrons 

per cluster. In PrgBrigNgO, the additional electron from the oxygen atom 

(relative to a-GdgClaN) coincides with the incorporation of another halogen atom, 

resiilting in a new structural modification. 
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FUTURE WORK 

Dxiring the last decade, exploratory research in rare-earth metal halide 

systems has resulted in a substantial number of new compoimds which adopt a 

fascinating variety of structure types and contain several degrees of cluster 

condensation. Incorporation of a variety of interstitials, especially transition 

metals, has led to the discovery of many unique compoimds which exhibit 

interesting electronic properties as well. One key to studying these properties, 

through either magnetic or electrical measurements, is the preparation of the 

material in high yield. Unfortunately, this has proved difficult in several of the 

systems investigated. Simply varying reaction temperatures and durations has 

not always resulted in single phase products. Although some success at 

increasing the yield has been fovind using alkali metal halides as flux agents, the 

formation of side products was troublesome. To avoid this problem, synthetic 

studies involving other materials as flux agents need to be conducted. A variety 

of alkaline-earth metal halides might prove to be more suitable at promoting 

crystal growth and not interfere greatly with magnetic measurements. This 

could also furnish siiitable crystals for structural characterization of the many 

unidentified phases. 

Additionally, the presence of a flux in certain reactions was observed to 

promote the formation of certain cluster phases over others, e.g. Yi6Br24lr4 rather 

than Y2oBr36lr4. This was observed in both the scandium bromide and yttrium 

bromide systems. The reason for this is imclear at present, although one might 
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speculate that the reaction processes are simply more rapid in the presence of 

the flux, thereby yielding products that were beyond the scope of the reaction 

times employed in synthesis. Alternately, the formation of ternary alkali-metal 

rare-earth metal halides may have a more subtle effect on the phase equilibria. 

Continued research in the scandiiom bromide system should resiilt in the 

discovery of new phases. Several promising unknowns have been observed, 

particularly with B and Os as interstitials. A number of phases that form as 

thin needles or fibers (especially for Z = Ir, Os, Re) may prove more diffioilt to 

characterize, owing to the propensity of these new phases to form as "mouse fur". 

Continued studies into the low temperature behavior of Scgo-xBrggOs^ could 

provide insight into the nature of the transition observed in the magnetic 

susceptibility data. Low temperature powder diffraction shotild allow detection 

of a phase transition, if one should occur. 

Lastly, the success of this research has shown that bromine chemistry can 

provide new and xinexpected materials which have not been realized in either 

the chloride or iodide systems. Similarly, a rich structiaral chemistry exists in 

the zirconiiun bromide system, where several novel structxire types unknown in 

either the chloride or iodide systems were discovered.^® These results indicate 

that studies in other rare-earth metal bromide systems, perhaps La or Gd with 

transition metal interstitials, could be very finaitful. 
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